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Abstract. Additively-manufactured metallic lattice materials are a class of architectured solids 
that is becoming increasingly popular due to their unique cellular structure, which can be 
engineered to meet specific design requirements. Understanding and modelling the damage in 
these innovative materials is a significant challenge that must be addressed for their effective use 
in aerospace applications. The Virtual Element Method (VEM) is a numerical technique recently 
introduced as a generalisation of the FEM capable of handling meshes comprising an assemblage 
of generic polytopes. This advantage in creating domain discretisation has already been used to 
model the behaviour of materials with complex microstructures. This work employs a numerical 
framework based on a nonlinear VEM formulation combined with a continuum damage model to 
study the fracture behaviour of two-dimensional metallic lattice material under static loading. 
VEM's effectiveness in modelling lattice failure behaviour is assessed through several numerical 
tests. The influence of micro-architecture on the material's failure behaviour and macroscopic 
mechanical performance is discussed. 
Introduction 
The computational modelling of the behaviour of lattice materials is an active field of research 
aimed at complementing the experimental activity in the quest for a better understanding of the 
potential of these materials in engineering applications. The Virtual Element Method (VEM) [1] 
is a recent generalisation of the Finite Element Method (FEM) for the treatment of general 
polygonal/polyhedral mesh elements that has been already used for several problems in structural 
mechanics [2,3,4,5,6] applications.  
Formulation 
For the lowest-order VEM formulation herein adopted, for a general polygonal virtual element 𝐸𝐸, 
the element degrees of freedom are the values of the components of the displacement at each of its 
𝑛𝑛 vertex, collected into the vector 𝒖𝒖𝐸𝐸. The displacements field is expressed as 𝒖𝒖 = 𝑵𝑵(𝑥𝑥,𝑦𝑦) 𝒖𝒖𝑬𝑬, 
where 𝑵𝑵(𝑥𝑥,𝑦𝑦) is the matrix containing the virtual shape functions 𝑵𝑵𝒗𝒗(𝑥𝑥,𝑦𝑦) associated with each 
vertex 𝒗𝒗. Shape functions are known only on the element edges of 𝑬𝑬, where they are globally 
continuous linear polynomials. An explicit expression for the strains is unavailable because the 
shape functions 𝑵𝑵𝒗𝒗 are not explicitly known within the polygonal element. An approximated 
constant strain field 𝛆𝛆𝚷𝚷 is assumed within each element, which can be computed from the degrees 
of freedom 𝒖𝒖𝑬𝑬 as 𝛆𝛆Π = 𝚷𝚷𝐸𝐸 𝒖𝒖𝐸𝐸, where 𝚷𝚷𝐸𝐸 ∈ 𝑅𝑅𝟛𝟛×𝟚𝟚𝟚𝟚 is the matrix representation of a projection 
operator defined as 

𝚷𝚷𝐸𝐸 = 1
𝐴𝐴𝐸𝐸
∑ ∫ 𝑵𝑵𝑣𝑣

𝐸𝐸
𝑒𝑒𝑣𝑣

𝑛𝑛
𝑣𝑣=1  𝑵𝑵(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑑𝑑  (1) 

where 𝐴𝐴𝐸𝐸  is the area of the polygonal element 𝐸𝐸, bounded by its 𝑛𝑛 edges 𝑒𝑒𝑣𝑣 and 𝑵𝑵𝑣𝑣
𝐸𝐸 is the matrix 

containing the components 𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑦𝑦 of the outward unit normal vector over each edge. Since the 
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virtual shape functions 𝑵𝑵𝑣𝑣 on the element edges are known polynomials, the integrals appearing 
at the right-hand side of previous equation are exactly computable. 

The tangent stiffness matrix 𝑲𝑲𝐸𝐸 for a general virtual element 𝐸𝐸 is given by the sum of two 
terms. The first term, named the consistency term, is given by 

𝑲𝑲𝐸𝐸
𝑐𝑐 = 𝐴𝐴𝐸𝐸 𝚷𝚷𝐸𝐸

𝑇𝑇 𝑪𝑪 𝚷𝚷𝐸𝐸  (2) 

where 𝑪𝑪 is the material tangent stiffness tensor in Voigt notation. 𝑲𝑲𝐸𝐸
𝑠𝑠  is a stabilization term whose 

presence is motivated by the need to avoid zero-energy modes not associated with rigid body 
motions. The loss of material integrity is governed by the internal damage variable ω, 0 ≤ ω ≤ 1. 
The constitutive equations for an isotropic damage model is 

𝛔𝛔 = (1 −ω) 𝑪𝑪0 𝛆𝛆Π (3) 

where 𝛔𝛔 and 𝛆𝛆Π collect the Voigt components of the stress and strain respectively, and 𝑪𝑪0 is the 
elasticity matrix for the pristine elastic material. The evolution of damage is governed by the linear 
softening law 

ω(κ) = κ𝑓𝑓
κ𝑓𝑓−κ0

�− κ0
κ
� (4) 

and loading-unloading conditions 

f(𝛆𝛆,κ) = ε𝑒𝑒𝑒𝑒(𝛆𝛆) − κ ≤ 0,  κ̇ ≥ 0,   f(ε, κ) κ̇ = 0 (5) 

in which 𝑓𝑓 is the damage loading function, 𝜀𝜀𝑒𝑒𝑒𝑒 is the modified Von Mises equivalent strain [8], 
and 𝜅𝜅 is an internal variable that corresponds to the maximum level of equivalent strain ever 
reached in the previous history of the material. The stress at a generic point 𝒙𝒙 and at a generic 
loading increment λ is given by 𝛔𝛔 = 𝛔𝛔(λ,𝒙𝒙, 𝛆𝛆Π,ℋ), where ℋ contains the history variables of the 
damage model. The tangent material stiffness matrix 𝑪𝑪 at a certain time 𝑡𝑡 is consistently computed 
from the constitutive law as  

𝑪𝑪(𝑡𝑡, 𝒙𝒙, 𝛆𝛆𝚷𝚷,ℋ) = ∂𝛔𝛔
∂𝛆𝛆𝚷𝚷

 (6) 

To avoid damage localisation and mesh dependency of the solution, an integral-type nonlocal 
damage model has been employed. The adopted weight function is the truncated quadratic 
polynomial function [4]. 
Numerical Tests 
The specimen design used for the following numerical tests is based on the Extended Compact 
Tension, EC(T), specimen, shown in Fig. 1(a). The EC(T) has been developed for fatigue and 
fracture testing of solid (dense) materials but has been adapted and used for characterizing lattice 
structures. The rectangular specimen consists of repeated unit cells of side length 𝑙𝑙. Each specimen 
is eleven unit cells wide (𝑊𝑊), forty unit cells high (𝐻𝐻, and two unit cells thick (𝑡𝑡). Only half of the 
EC(T) specimens were modelled by applying appropriate symmetry boundary conditions as shown 
in Fig. 1(b). The unit cell of the lattice structure studied in this work is shown in Fig. 2(a) and is 
based on a two-dimensional representation of a body-centred cubic (GBCC) unit cell (Fig. 1(b)). 
Each unit cell has external dimensions of 𝑙𝑙 × 𝑙𝑙, with 𝑙𝑙 =  3.5 mm. Each lattice unit cell is 
discretised with 176 polygonal virtual elements (Fig. 2(c), and the numerical model has 157882 
degrees of freedom. Simulations are carried out under displacement control and plane-strain 
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assumption. The material selected as the constituent material is an additive manufactured Ti-6Al-
4V alloy whose mechanical and damage properties are [7]: Young's Modulus 𝐸𝐸 =  123 GPa, 
Poisson's ratio ν =  0.3, yield strength σ𝑦𝑦 = 932 MPa and fracture strain 𝜅𝜅𝑓𝑓 = 0.1105. The 
interaction radius has been set to 𝑅𝑅 =  2 mm. Two different unit cell configurations have been 
analysed, with truss diameter 𝑑𝑑 = 0.5 mm and 𝑑𝑑 = 0.75 mm. For each configuration, numerical 
tests have been performed with crack length 𝑎𝑎 = 2𝑙𝑙 and 𝑎𝑎 = 3𝑙𝑙. 

 

Figure 1: (a) Extended Compact Tension, EC(T), specimen; (b) computational model. 

 
Figure 2: (a) 2D representation of the GBCC unit cell geometry; (b) actual 3D geometry. 

Conclusions 
A nonlinear VEM formulation combined with a continuum damage model has been employed to 
model the fracture behaviour of two-dimensional metallic lattice material under static loading. 
VEM's effectiveness in modelling complex morphologies such as lattice structures has been 
verified. The load as a function of the load-line displacement remains relatively linear for most 
specimens until close to reaching the critical load and a reduction of the critical load with initial 
crack extension can be observed for both unit cell configuration. 
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Figure 3: Load-displacement responses of the (a) 0.75 mm and (b) 0.50 mm uniform diameter 
EC(T) specimens showing the applied load as a function of load-line displacement for different 

initial crack lengths. 
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