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Abstract. A data-driven approach based on Deep Neural Network (DNN) techniques is here 
proposed for Structural Health Monitoring of large in-orbit flexible systems. Damage scenarios 
are generated via a Finite Element commercial code to train and test the machine learning model, 
by considering equivalent properties of the composite material of the solar panels. The fully 
coupled 3D equations for the flexible spacecraft are integrated to test typical profiles of attitude 
manoeuvres in case of different damages. The DNN model is trained using sensor-measured time 
series responses, with each response associated with the label of the corresponding damage 
scenario, and tested via k-folding approach. This methodology offers a promising approach to 
detect structural damage in solar arrays on spacecraft using machine learning techniques.  
Introduction 
With the increasing use of composite materials in solar arrays on modern spacecraft, structural 
damages during the operational life have become a significant concern. Such events often lead to 
modifications of the control/structure interaction dynamics, thus posing an issue for the 
implemented system controller. Detecting failures in flexible structures can however be 
challenging: local damages may not cause significant changes in the global dynamics of the 
satellites to be detected by on-board sensors. Therefore, a set of sensors at structural level is 
beneficial to identify promptly the location and the entity of the damages.  

As far as current state-of-the-art solutions for damage identification are concerned, there are 
mostly two adopted philosophies: physics-based and data-driven methods [1-3]. The purpose of 
this study is to propose a Deep Learning methodology with multi-classification damage 
capabilities, with respect to the research proposed by the authors’ previous work [4-5]. Indeed, the 
present study aims at proposing an architecture and guidelines for performing SHM of space 
structured based on LSTM-NNs. A challenging study case in terms of impact of failures on the 
global spacecraft dynamics is selected, and a more complex problem in terms of higher 
dimensionality of the multi-class identification problem is addressed, giving information not only 
about the presence, but also the location of the damage. The structure and damage entity is 
implemented taking into account the equivalent properties and effects on a traditional composite 
space structure, in particular, an aluminum honeycomb.  

The approach is carried out as follows. Firstly, the 3D mathematical model of a flexible 
spacecraft is implemented in a simulator for carrying out a wide set of in-orbit attitude maneuvers. 
Then, the spacecraft test case model is described, including the network of distributed sensors for 
the SHM and the damage configurations addressed herein. The implemented deep neural 
architecture is described, based on an LSTM variant. Finally, the main results about the 
performance of the trained classification network are discussed.  
Bidirectional Long-Short Term Memory Network  
The efficacy of Long Short-Term Memory (LSTM) models has been validated in various domains, 
notably within the area of time series prediction [6][7], as well as for both single-variable and 
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multi-variable time sequence classification tasks [8]. LSTMs are purposefully crafted to exploit 
long-range dependencies, enabling them to effectively address scenarios where the present time 
step is distant from correspondent information. By incorporating the capability to effectively 
process historical data within a single cell, Deep Neural Network (DNN) architectures can benefit 
by establishing connections across multiple LSTM layers.  
Details about the structure of a LSTM network can be found in [8]. In this study, we use a 
multivariate deep classification model composed of an input layer, two stacked Bi-LSTM layers, 
including a dropout layer to address overfitting issues, a Softmax layer, and a final classification 
layer.  
Spacecraft Dynamics and Damages 
This section briefly introduces a representative case of a spacecraft equipped with two solar panels 
of 3 x 1 m (composed of two sub-panels each), designed using MSC Nastran FEM tool based on 
information available in literature about dimensions, mass and shape of the panels. The first three 
modes of the assembled spacecraft are illustrated in Fig.1. Since the size and mass constraints at 
launch require solar panels to be lightweight, while strong and stiff, a composite material – an 
aluminium honeycomb here specifically - is selected for each sub-panel. Moreover, to reduce the 
complexity of FE model, an equivalent model of the multi-layer composite structure is here 
considered as a single-layer panel. The equivalent thickness 𝑡𝑡𝑒𝑒𝑒𝑒, and stiffness moduli  𝐸𝐸𝑒𝑒𝑒𝑒  and 
𝐺𝐺𝑒𝑒𝑒𝑒,  obtained by solving the equations in available literature [9], are 

𝑡𝑡𝑒𝑒𝑒𝑒 = �3ℎ𝑐𝑐2 + 6ℎ𝑐𝑐𝑡𝑡𝑓𝑓 + 4𝑡𝑡𝑓𝑓2        𝐸𝐸𝑒𝑒𝑒𝑒 = �2𝑡𝑡𝑓𝑓𝐸𝐸𝑓𝑓� 𝑡𝑡𝑒𝑒𝑒𝑒�         𝐺𝐺𝑒𝑒𝑒𝑒 = �2𝑡𝑡𝑓𝑓𝐺𝐺𝑓𝑓� 𝑡𝑡𝑒𝑒𝑒𝑒�  (1) 

where 𝑡𝑡𝑓𝑓 is the skins thickness, ℎ𝑐𝑐 is the height of honeycomb core,  𝐸𝐸𝑓𝑓 and 𝐺𝐺𝑓𝑓 skins moduli. The 
equivalent data for a 10mm sandwich panel are 𝑡𝑡𝑒𝑒𝑒𝑒 = 0.0156𝑚𝑚, 𝐸𝐸𝑒𝑒𝑒𝑒 = 90𝐺𝐺𝐺𝐺𝐺𝐺, 𝐺𝐺𝑒𝑒𝑒𝑒 = 3.31𝐺𝐺𝐺𝐺𝐺𝐺. 

At the same time, the Modal Strain Energy (MSE) - defined as the amount of elastic energy 
stored in a finite element - associated to the flexible appendages was computed. The related MSE 
map (see Fig. 2) is used to identify the locations of the elements whose change in mechanical 
properties could be more problematic for the global dynamics of the system. The objective is to 
avoid building a heavy set of data including damages all over the structure (also damages 
associated with low risk, i.e. inducing a negligible change in the modal properties of the satellite), 
potentially leading to an excessively high dimension multivariate classification problem. Instead, 
the approach proposed here is to discriminate a set of potential critical damages, to be identified 
via the deep learning architecture, based on MSE concentration. 

In this research, damages are considered as resulting from space debris hits, causing a 
perforation in the structure. The dimension of damage is assumed as not exceeding 5cm x 5cm, 
which is a representative size for high velocity impacts for aluminium honeycomb [10]. Damages 
are simulated only on one solar panel. Hence, a set of three-axis accelerometers sensors are 
installed on one side. In particular, the position of the sensors is depicted in Fig. 3. 

 

 

 

Fig. 1: Modal shapes. From left to right, 1st mode: 0.97 Hz, 2nd mode: 1.58 Hz,  
3rd mode: 3.27 Hz 
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Fig. 2: Modal Strain Energy (MSE) map. From left to right, 1st mode, 2nd mode, 3rd mode 
 

 

 

Fig. 3: Overview of damages (indicated as 𝐼𝐼𝐼𝐼𝑑𝑑) and sensors (indicated with numbers from 1 to 
5).  

Training and Validation 
To generate the training set, a 3D simulator of in-orbit flexible spacecraft dynamics – developed 
in house [11-12] – is used to reproduce satellite attitude maneuvers. A finite element model is 
created for each damage scenario. Once the damaged structural sub-models, deriving from the 
original undamaged one, and the network of sensors are defined, the dataset generation for the 
training of the DNN can be set up. In detail, the followed steps are: 
• The finite element structural models are imported in Matlab to perform the non-linear 

simulation of attitude maneuvers for the flexible spacecraft.  
• Several one-, two- and three-axis attitude maneuvers are simulated by varying not only the 

target orientations, but also the gains of the quaternion-based PD control law to further 
diversify the dataset.   

• Time histories from installed accelerometers sensors are recorded and saved to create the 
training and testing data, not before being pre-processed and normalized according to their 
mean and standard deviation. 

Results 
Several parameters are considered and optimized to improve the performance of the network: the 
DNN hyperparameters, the data pre-processing and the number and location of sensors. Finally, 
Table 1 shows the results in terms of accuracy (mean value and standard deviation) of the adopted 
classification network. In detail, four damages in the area of the structure associated with both 
highest MSE (red areas in Fig. 2) and lower MSE (green areas in Fig. 2) are considered. Despite 
inducing a reduced change in the system frequencies and modal shape (about 1% relative 
difference), the DNN shows a good classification accuracy even in this challenging case. The 
confusion matrix is illustrated in Fig. 4.  
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Table 1: Classification accuracy  
Case Description Rationale Accuracy 

1 𝐼𝐼𝐼𝐼𝑑𝑑: 0, 1, 2, 5, 6 
Sensors: 1, 2, 3, 4, 5 

Identify the location of different damages in different 
MSE concentration areas (highest and second highest) 

85.09% ± 
4.87% 

 

 

Fig. 4: Confusion matrix 
Conclusions 
This work has showcased the potential of LSTM networks in identifying damages in large space 
structures by analyzing time responses measured by sensors. The presented results are not only 
preparatory to carry out a laboratory experimental validation phase on a flexible spacecraft test-
rig, but also propaedeutic to apply the system to several innovative composite materials. Indeed, 
future research endeavors could explore the possibility of training deep neural networks using real-
world measured data, enabling them to operate in practical conditions and accurately predict actual 
damages. 
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