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Abstract. A computational framework for thermo-elastic homogenization of polycrystalline 
materials is proposed. The formulation is developed at the crystal level and it is based on the 
explicit Voronoi representation of the micro-morphology. The crystal thermo-elastic equations are 
formulated in an integral form and numerically treated through the boundary element method. The 
presence of volume integrals, induced by the inherent physics of the thermo-elastic coupling, is 
addressed through a Dual Reciprocity Method (DRM), which allows recasting the formulation in 
terms of boundary integrals only. The developed methodology is applied for estimating the 
homogenized thermo-elastic constants of two widely employed ceramic materials. The method 
may find applications in multiscale analysis of polycrystalline structural component. 
Introduction 
Multiscale materials modelling, which focuses on understanding how mechanisms at different 
length/time scales interact and contribute to the emerging of materials properties at larger scales, 
is assuming increasing importance in engineering, thanks to developments in experimental 
materials nano/micro-characterization, which provide a wealth of detailed information about the 
materials constituents, and to the larger availability of high performance computing, which 
provides the means to process all the available information in complex modelling frameworks. 
This favours the understanding of existing materials and boosts the design of new ones, with 
desired properties at a given scale, consolidating the materials-by-design paradigm [1]. 

An essential item of multiscale modelling is materials homogenization, which generally focuses 
on inferring the materials aggregate properties at a given scale from the knowledge of the 
morphological and constitutive features of material constituents at lower scales. Examples are 
provided by the techniques focused on predicting the properties of composite materials at the 
laminate level from the characterization of the individual plies or even, at a lower scale, from the 
properties of fibers and matrices and their mutual arrangement. An important concept in materials 
homogenization is that of representative volume element that may be defined as a material sample 
small enough to be considered as a material point at the component scale, but large enough to 
contain a number of elementary micro-constituents sufficient to characterize the aggregate 
properties in an average sense, so that no meaningful fluctuations in average materials properties 
are induced by small variations of the specimen size [2]. 

In this work, an original framework for computational homogenization of polycrystalline 
materials, is discussed. Polycrystalline materials, which include metals, alloys, or ceramics, are 
widely employed in engineering and their properties at the component level emerge from the 
properties of individual crystals and their interactions. The framework is based on the employment 
of a multi-region boundary integral formulation for representing the thermo-mechanics of the 
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aggregate. Differently from finite element approaches, it allows examining the thermo-elastic 
problem considering as primary variables only crystal boundary displacements, temperature, 
tractions and thermal fluxes, promoting remarkable savings in terms of overall number of degrees 
of freedom and computational storage memory and resolution time, which is of paramount 
importance for effective multiscale analysis. 

This work summarizes the main aspects of the developed framework and reports some 
homogenization results. The interested readers may access Refs.[3-13] for further details. 
Formulation overview 
The developed framework is based on: i) algorithms for the generation of sets of Voronoi 
polycrystalline specimens [3,6]; ii) robust meshing algorithms able to deal with the statistical 
features of polycrystalline aggregates [6]; iii) a boundary integral representation of the thermo-
elastic problem obtained through the dual reciprocity method (DRM) [13]; iv) algorithms for the 
discretization and robust numerical integration of the thermo-mechanical boundary integral 
equations [13]; iv) algorithms for the computation of volume averages of the micro-fields, needed 
for retrieving the apparent materials properties and estimating the effective ones [13]. 
Morphology generation/meshing. Voronoi-Laguerre tessellations are employed to represent 
polycrystalline morphologies retaining the main statistical features of real materials. Open-source 
packages, e.g. VORO++ (https://math.lbl.gov/voro++/) or NEPER (https://neper.info), are 
available to generate general 3D tessellations. Specialized algorithms for robust boundary 
elements meshing are presented in Ref.[6]. Non-prismatic periodic realizations are employed in 
this work, as they remove boundary walls distortions and enhance homogenization convergence. 
Boundary integral formulation. Differently from finite elements, the starting point for the 
formulation is the single-crystal thermo-elastic boundary integral representation  

𝑐𝑐𝑖𝑖𝑖𝑖(𝒙𝒙) 𝑈𝑈𝑖𝑖(𝒙𝒙) + ∫ 𝑇𝑇�𝑖𝑖𝑖𝑖∗Γ (𝒙𝒙,𝒚𝒚)𝑈𝑈𝑖𝑖(𝒚𝒚)𝑑𝑑Γ = ∫ U𝑖𝑖𝑖𝑖
∗

Γ (𝒙𝒙,𝒚𝒚)𝑇𝑇𝑖𝑖(𝒚𝒚)𝑑𝑑Γ + ∫ U𝑖𝑖𝑖𝑖
∗

Ω (𝒙𝒙,𝒚𝒚)𝐹𝐹𝑖𝑖(𝒚𝒚)𝑑𝑑Γ  (1) 

where: 𝒊𝒊, 𝒋𝒋 =1,…,4; 𝚪𝚪 and 𝛀𝛀 denote the crystal boundary and domain; x and y are respectively the 
collocation and integration point; 𝑼𝑼𝒋𝒋 and 𝑻𝑻𝒋𝒋 are components of generalized thermo-elastic 
displacements and tractions respectively, which collect, respectively, components of 
displacements and the temperature jump and components of mechanical tractions and the thermal 
flux; 𝐔𝐔𝒊𝒊𝒋𝒋∗  and 𝑻𝑻�𝒊𝒊𝒋𝒋∗  are contain combinations of components of the elastic and thermal fundamental 
solutions, such as to introduce the thermo-elastic coupling in the integral representation, together 
with the volume terms 𝑭𝑭𝒋𝒋, which contains components of the thermal gradient. In Eq.(1) the first 
integral on the left-hand side must be intended as Cauchy principal value. 

The presence of the volume integral in Eq.(1) requires special consideration: its presence would 
call for volume discretization, thus reducing the attractiveness of the integral formulation. To 
retrieve the benefits of a pure boundary representation, this integral can be transformed into a sum 
of boundary integrals employing the dual reciprocity technique described in Ref.[13] and 
references therein. Once this transformation is performed, the pure boundary integral equations 
can be employed for modelling the thermo-mechanics of the aggregate: for each grain, they are 
collocated at the nodes of the boundary mesh and are numerically integrated using the boundary 
element method. After such operations, discrete systems expressed in terms of generalized thermo-
elastic boundary nodal displacements and tractions are associated with each grain; such equations 
are then coupled with suitable interface continuity/equilibrium equations and with consistent 
boundary conditions enforced on the overall aggregate producing a system of the form 
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�𝐀𝐀𝐼𝐼 � 𝐗𝐗 =  �𝐁𝐁𝐁𝐁𝟎𝟎 �  (2) 

where the blocks A and B contain coefficients stemming from the boundary element integration, 
X and Y collect, respectively, unknown and known nodal components of displacements, 
temperature, tractions and thermal flux, and I implements the intergranular continuity equations. 
Eq.(2) is to be solved with sparse-matrix specialized solvers, due to its numerical structure. 

Once the numerical solution of the system in Eq.(2) is available, the micro-fields can be solved. 
The homogenization is performed enforcing periodic thermo-elastic boundary conditions and 
computing volume averages of stresses and thermal fluxes, which allows retrieving the apparent 
elastic, conductivity, and thermo-elastic apparent constants. In this work a statistical 
computational homogenization is implemented, which employs both ensemble and volume 
averages for estimating apparent and effective properties. Assuming ergodicity, ensemble averages 
of volume averages computed over sets of polycrystals containing a selected number of gains are 
computed to associate apparent properties with that number of grains; the operation is repeated at 
increasing number of grains until convergence of the apparent properties is recorded, thus 
providing an estimate of the material effective properties, see Ref.[13]. 
Some numerical results 
Statistical computational homogenization results about polycrystalline silicon carbide and alumina 
are presented here. Single crystal properties at room temperature are taken as in Ref.[13] and 
Fig.(1) shows the convergence of the apparent thermo-elastic constants at increasing number of 
grains. Ensemble averages are computed over sets of ten realizations and up to 100 grains per 
realization are considered. The estimated properties always fall within Reuss and Voigt bounds. 

 
Fig.1: Computational homogenisation results for selected components of thermo-elastic 

coefficients for polycrystalline alumina and silicon carbide. The + markers identify volume 
averages over single realisations, the dashed curves correspond to ensemble averages, while the 

shaded area lies between the Reuss’ and Voigt’s bounds. 
 

Summary 
The development of an original multi-region dual reciprocity boundary elements framework for 
thermo-elastic homogenization of polycrystalline materials has been discussed, highlighting the 
benefits offered with respect to other popular approaches. The presented results highlight the 
effectiveness in estimating materials effective properties. The proposed tool may be employed as 
component of multiscale analysis tools. 
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