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Abstract. Stability analysis and assessment are fundamental in the analysis and design of 
dynamical systems. Particularly in rotorcraft dynamics, problems often exhibit time-periodic 
behavior, and modern designs consider nonlinearities to achieve a more accurate representation of 
the system dynamics. Nonlinearities in rotorcraft may arise from factors such as nonlinear damper 
constitutive laws or the influence of fluid-structure interaction, among others. Regardless of their 
origin, quantifying the stability of nonlinear systems typically relies on calculating their Jacobian 
matrix. However, accessing the Jacobian matrix of a system is often challenging or impractical, 
calling for the use of data-driven methods. This introduces additional complexity in capturing the 
characteristic dynamics of the system. Hence, a data-driven approach is proposed that utilizes the 
Largest Lyapunov Characteristic Exponent, obtained by analyzing the system's time series. 
Introduction 
When faced with a nonlinear problem in its general form, 

 
�̇�𝑥 = 𝑓𝑓(𝑥𝑥, 𝑡𝑡) 

 
stability is a local property of a specific solution, 𝑥𝑥(𝑡𝑡), resulting from a corresponding set of initial 
conditions, 𝑥𝑥(𝑡𝑡0) = 𝑥𝑥0, i.e., of a Cauchy problem. One commonly encountered instance is the 
Linear, Time-Invariant (LTI) scenario. In this context, Lyapunov Characteristic Exponents (LCEs) 
quantify the growth or decay rate of disturbances from a typical solution in the nonlinear 
differential problem across distinct directions within the state space, providing insight into the 
stability of the reference solution in relation to these directions. Consider a solution 𝑥𝑥(𝑡𝑡) for 𝑡𝑡 ≥
𝑡𝑡0 (some call it the ‘fiducial trajectory’), and a solution 𝑥𝑥𝑖𝑖 (𝑡𝑡) of the problem. 

 
�̇�𝑥𝑖𝑖 = 𝑓𝑓/𝑥𝑥 |𝑥𝑥(𝑡𝑡),𝑡𝑡 𝑥𝑥,        𝑥𝑥(𝑡𝑡0) =  𝑥𝑥0𝑖𝑖𝑖𝑖𝑖𝑖  

 
for a perturbation 𝑥𝑥0𝑖𝑖  of arbitrary magnitude and direction. LCEs are defined as 

𝜆𝜆𝑖𝑖 = lim
𝑡𝑡→∞

1
𝑡𝑡
� 𝑥𝑥𝑖𝑖 (𝑡𝑡)� 

 
When all the Lyapunov Characteristic Exponents (LCEs) are negative, the solution exhibits 

exponential stability. Conversely, if at least one LCE is positive, the reference solution is unstable 
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or may lead to a chaotic attractor. When the largest LCE – or LCEs – are zero, a limit cycle 
oscillation (LCO) can be expected. This means that in the state space there exists one or multiple 
independent directions along which the solution neither expands nor contracts, converging instead 
to a self-sustained periodic motion. When multiple largest LCEs are equal to zero, a higher-order 
periodic or quasi-periodic attractor arises, such as a multi-dimensional torus. It is important to 
exercise caution when interpreting the LCEs as eigenvalues of Linear, Time-Invariant (LTI) 
problems, as demonstrated in [5], as they are not always equivalent. 
Jacobian-Less Methods: Max LCE from Time Series 
The MLCE is the LCE associated with the least damped principal direction of the problem, which 
represents the most critical stability indicator. Among the algorithms proposed in the literature, 
the one proposed by Rosenstein et al. [1] is used in this work. It is defined by the following steps. 
By utilizing the trajectory matrix, 𝑿𝑿 ∈  ℝ𝑀𝑀×𝑚𝑚, the full phase-space can be reconstructed using the 
time delay method, if needed, along with estimating the embedding dimension, 𝑚𝑚 (estimated 
following Takens' theorem), and the reconstruction delay, 𝐽𝐽, where 𝑀𝑀 = 𝑁𝑁 − (𝑚𝑚− 1)𝐽𝐽 and 𝑁𝑁 is 
the length of the time series. In this context, each column of matrix 𝑿𝑿 is a phase-space vector. 

 
𝑿𝑿 = [𝑿𝑿1 𝑿𝑿2 …𝑿𝑿𝑚𝑚] 

 
After constructing the trajectory matrix, the algorithm locates the nearest neighbor, 𝑿𝑿�̂�𝚥, of each 

point on the trajectory, which is found by searching the point that minimizes the distance from 
each reference point, 𝑿𝑿𝑗𝑗. The distance is expressed as  

 
𝑑𝑑𝑗𝑗(0) =  min

𝑿𝑿𝚥𝚥�
�𝑿𝑿𝑗𝑗 −  𝑿𝑿�̂�𝚥� 

 
where 𝑑𝑑𝑗𝑗(0) is the initial distance from the 𝑗𝑗th point to its nearest neighbor, and ∥·∥ denotes the 
Euclidean norm. Nearest neighbors must have a temporal separation greater than the mean period 
(𝑇𝑇�, the reciprocal of the mean frequency of the power spectrum, although it can be expected that 
any comparable estimate, e.g., using the median frequency of the magnitude spectrum, yields 
equivalent results) of the time series,  |𝑗𝑗 − 𝚥𝚥̂| >  𝑇𝑇�. The largest Lyapunov exponent is then 
estimated as the mean rate of separation of the nearest neighbors. The 𝑗𝑗th pair of nearest neighbors 
diverge approximately at a rate given by the largest Lyapunov exponent: 

 
𝑑𝑑𝑗𝑗(𝑙𝑙)  ≈ 𝐶𝐶𝑗𝑗𝑒𝑒𝜆𝜆1(𝑙𝑙 ∆𝑡𝑡) 

 
where 𝐶𝐶𝑗𝑗 is the initial separation. By taking the logarithm of both sides which represents a set of 
approximately parallel lines, for 𝑗𝑗 = 1, … ,𝑀𝑀, each with a slope roughly proportional to 𝜆𝜆1. The 
largest Lyapunov exponent is calculated using a least-squares fit to the “average” line defined by  

 

𝑦𝑦(𝑙𝑙) =  
1
∆𝑡𝑡
〈log 𝑑𝑑𝑗𝑗(𝑙𝑙)〉 

where ⟨·⟩ denotes the average over all values of 𝑗𝑗. 
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XV-15 Model Whirl Flutter 
Building upon the previous research conducted in [2], the aeroelastic simulation of the XV-15 
tiltrotor is now considered. For this analysis, an aeroservoelastic model is employed, encompassing 
all significant structural components. The airframe model comprises various elements, such as the 
flexible wing, rigid fuselage, empennages, control surfaces (elevator, rudder, flaps, and flaperons), 
and nacelle tilt mechanisms. Additionally, the model, originally developed in [4], incorporates 
crucial cockpit elements (a seat and control inceptors - collective and cyclic) to explore rotorcraft-
pilot couplings. To develop this model, the MBDyn multibody solver (https://mbdyn.org/) is 
utilized, to represent the fundamental frequencies and mode shapes of the complete aircraft, with 
specific emphasis on the wing-nacelle section. The proprotor, featuring a three-bladed stiff-in-
plane rotor with a gimballed hub, comprises the blades, flexible yoke, and pitch control chain. The 
flexibility of the wing, rotor blades, and yokes of the two rotors is modeled using an original 

geometrically exact composite-ready beam finite element model known as “finite volume” [3], 
which is well-suited for multibody dynamics. The Whirl-Flutter phenomenon was observed 
through a two-phase approach involving excitation with a sinusoidal input through the swashplate, 
after reaching the desired trim configuration, followed by a free response phase. By linear 
interpolation, the instability region under the standard operating condition for the airplane mode  
was estimated to be U∞ = 195.5 m/s (indicated by the dotted red line in Fig. 1). Notably, the 
proposed method successfully recovered the accurate estimation of the Whirl-Flutter instability 
previously documented in [4], validating its reliability. However, it is important to note that time 
series analysis methods are sensitive to changes in the observation window. Due to the system's 
rapid convergence compared to other directions, evaluating it accurately poses challenges, 
particularly in the case of torsion. To verify the obtained results, a comparison was made with 
those obtained using the Matrix Pencil Estimation method (MPE). In the chord direction (with a 
configuration in airplane mode and idle engines), a time series depicting a slow limit cycle was 
obtained at U∞ = 185.2 m/s (Fig. 2). Interestingly, when solely considering the linear component, 
the system appears to exhibit growth. However, the system converges to a limit cycle. The 

Figure 1: MLCE of the XV-15 in the standard operating condition for the airplane mode. 

https://mbdyn.org/
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amplitude, A, in Fig. 2 used to compare the solution obtained by the MPE method is determined 
by selecting the maximum value present in the time series. 

Conclusion 
The presented approach is employed for investigating the whirl flutter instability of a tiltrotor. By 
extensively exploring its nonlinear dynamics, it becomes feasible to expand the understanding of 
various instabilities, particularly in cases where linear methods fall short in capturing the entirety 
of the response domain. Future advancements will involve coupling the method with the vortex 
particle solver DUST (https://www.dust-project.org/) to have a more detailed account for the 
aerodynamic interactions. 
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Figure 2: Time history with an input perturbation in the chord, at the hub location. 
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