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Abstract. The new Adaptive Finite Elements presented are based on Carrera Unified Formulation 
(CUF) that permits to implement 1D and 2D elements with 3D capabilities. In particular, by 
exploiting the node-dependent kinematic approach recently introduced and incorporating the FEM 
shape functions with the CUF kinematic assumptions in unique 3D approximating functions, it is 
demonstrated that new mesh capabilities can be obtained with the use of presented elements by 
easy implementation. A classical patch test is performed to investigate the mesh distortion 
sensitivity.  
Introduction 
To alleviate meshing issues due to FEM, more advanced techniques can be used, resorting to 
numerical methods that are designed from the very beginning to provide arbitrary order of accuracy 
on more generally shaped elements. These techniques are based, for instance, on the Virtual 
Element Method (VEM) [1]. In fact, in contrast to FEM in which elements are typically triangular 
and quadrilateral in 2D or tetrahedral and hexahedral in 3D, the VEM permits arbitrary two-
dimensional polygonal and three-dimensional polyhedral elements [2]. This allows the problem 
domain to be discretized by elements represented by arbitrary polygons, which can be concave and 
convex. Moreover, different polynomial consistency is allowed within the method and non-
conforming discretizations can be handled, mainly for local refinement and so on, representing the 
key aspect of this method.  

The newly proposed Adaptive Elements, which are Finite Elements based on Carrera Unified 
Formulation (CUF), represent more agile and manageable elements, based on a well-known 
technique (FEM), easy to implement and can produce the same benefits of using VEM. Recently, 
in the framework of CUF, a novel approach called Node-Dependent Kinematics (NDK) has been 
proposed to further increase the numerical efficiency of the models [3]. The Node-Dependent 
Kinematics approach, along with the 3D modelling of non-orthogonal geometries [4], opens the 
possibility to create elements with a non-conventional number of nodes, complex geometrical 
shapes, and different polynomial approximations along different spatial directions, leading to a 
certain freedom in modelling the problem considered. In this way, 3D elements can be recovered 
with a non-regular shape that can adapt to the edges of the domain considered, when the 
geometrical constraints or the kinematic behavior of the structure requires that. 
Adaptive Finite Elements 
In traditional beam and plate theories, it is difficult to model beams with variable sections or 
sections that are not orthogonal to the axis, as well as plates with varying thickness or edges not 
perpendicular to the mid-surface. However, with the Node-Dependent Kinematic approach [3], it 
is possible to extend the Carrera Unified Formulation models to incorporate more complex 
geometries. This is achieved by incorporating the CUF kinematic assumption with the FEM 
discretization to create a unique 3D approximation, as follows: 



Aeronautics and Astronautics - AIDAA XXVII International Congress Materials Research Forum LLC 
Materials Research Proceedings 37 (2023) 313-316  https://doi.org/10.21741/9781644902813-68 
 

 
314 

 
 
Where where ξ, η, ζ are the natural coordinates corresponding to x, y, z and u = {ux, uy, uz} is 

the 3D displacement field. A double summation over the indeces i=1,…, Nn and τ=1,…,M is 
implied, where Nn is the number of the nodes in the element and M is the number of approximating 
functions adopted for the kinematic theory. Fτ and Ni are defined according to the type of element 
(beam or plate): Ni are the FEM shape functions that are used along the axis for beam elements or 
in the plane for the plate elements; Fτ are the approximating functions over the cross-section for 
the beam or along the thickness for the plate. Lagrange polynomials are chosen in this work for 
generating both Fτ and Ni, according to the CUF [4]. qτi are the generalized nodal displacements. 
Note that the function Fτ  depends on the node ‘i’.  

The function Lτi = (Fi
τNi) represents a non-conventional 3D shape function in which the order 

of expansion can be different along one of the spatial directions. As a result, this approach 
overcomes the limitations of classical 3D finite element, related to its aspect ratio, with a 
consequent saving in degrees of freedom and the possibility to create polygonal elements.  

In the following, the acronyms B2 (linear), B3 (quadratic) and B4 (cubic) are used both for the 
1D discretization of the axis in beam models or for the approximation through the thickness in 
plate models; as well as the acronyms Q4 (linear), Q9 (quadratic) and Q16 (cubic) are used both 
for the 2D approximation of the cross-section in beam models and for the discretization of the in-
plane domain in plate models. 
Patch test 
This standard test is classically used in order to investigate the mesh distortion sensitivity in plate 
bending problems. The in-plane dimensions of the square plate considered are 100×100 m2 and 
the thickness is 5 m. The boundary conditions are clamped (CC). A transverse concentrated force 
is applied at the center of the top surface F = 4 N. The material is isotropic with the following 
properties: E = 10.92 Pa, ν = 0.30 and ρ = 1 kg/m3. The meshes initially used are a 4x4 Q4 elements 
and a 4x4 Q9 elements in the plane, with B3 approximation along the thickness in both cases. 

Due to the symmetry of the problem, a quarter of the plate is considered. In particular, the 
bottom-left quarter of the plate is chosen and symmetry boundary conditions are applied along cut 
edges. F = 1 N is applied on the top-right corner. The resulting mesh of the plate quarter is 2 × 2 
based on Q4 or Q9 plate elements. 

Some beam elements are introduced in the mesh in order to obtain distorted elements with 
different number of nodes along the edges. Then, three different configurations are analyzed: 

- 2xQ4 1xB2: in this configuration, the previous two elements at the top are substituted by a 
single 1D element with 2 nodes, having a Q9 approximation on the cross-section; 
- 2xQ4 1xB3: as in the previous case, the two elements at the top are substituted by a single 1D 
element but having 3 nodes along the axis, where the cross-section is expressed as a Q9 element; 
- 2xQ4 1xQ9: the number of nodes is identical with respect to the previous case, but the 
discretization of the two elements at the top is different, accounting for a single Q9 element 
having a B3 discretization along the thickness. 
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Figure 1: Quarter plate: 2xQ4 1xB2 mesh 
 

In Fig. 1 it is possible to visualize one of the described configurations: the black dots are the 
FEM nodes, while the white dots represent the CUF nodes added considering the thickness and 
the cross-section of the plate and the beam elements, respectively.  
 

 
  

Figure 2: Quarter plate - mesh distortion defined by parameter ‘s’ 
 

The mesh distortion is characterized by the parameter s ∈ {−12,−10,−6, 0, 6, 10, 12}, which 
defines the coordinates of the central node of the plate quarter. Note that the parameter ‘s’ can 
assume negative and positive values, as shown in Fig. 2: if the parameter s is negative, the 
considered element is convex; if the parameter s is positive, the element becomes non-convex. 

A static analysis is performed and the results are computed in terms of transverse displacement 
Uz = uz(a, a, 0) (the center point on the midsurface of the entire plate) for the distorted mesh and it 
is normalized with respect to the reference value Uz0 calculated for the regular mesh (s = 0). The 
results computed by varying the parameter s are reported in Fig. 3. 
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Figure 3: Variation of the ratio Uz/Uz0 for CC quarter plate 

 
One has to take into account that the 2x2Q9 solution is the most accurate with the highest 

number of degrees of freedom (DOFs=225), the 2x2Q4 (DOFs=81) is the least accurate and the 
other solutions are in the middle according to their related degree of approximation. The meshes 
2xQ4 1xQ9 (DOFs=108) and 2xQ4 1xB3 (DOFs=108) are very similar to each other and they are 
compared to highlight that their solution are exactly the same, although the first uses a plate 
element (Q9) and the other one a beam element (B3). 
Conclusions 
The results demonstrate that the sensitivity to the distortion of the mixed meshes with beam 
elements is comparable to the regular meshes (2x2Q4 and 2x2Q9). In particular, the use of B2 
beam element in the mesh 2xQ4 1xB2, with a number of DOFs equal to the mesh 2x2Q4 
(DOFs=81), doesn’t compromise the trend of the results when the mesh is distorted, although it 
permits to differentiate the number of nodes along the edges of the element (see Figure 3(a)) by 
reducing also the total number of the nodes in the element with respect to the other mixed meshes. 
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