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Abstract. Peridynamics is a nonlocal theory that can effectively handle discontinuities, including 
crack initiation and propagation. However, near the boundaries, the incomplete nonlocal regions 
are the cause of the peridynamic surface effect, resulting in unphysical stiffness variation. 
Additionally, imposing local boundary conditions in a peridynamic (nonlocal) model is often 
necessary. To address these issues, the surface node method has been proposed for improving 
accuracy near the boundaries of the body. Although this method has been verified for a variety of 
problems, it has not been applied for elastodynamic problems involving Neumann boundary 
conditions. In this work we show a numerical example of this case, comparing the results with the 
corresponding peridynamic analytical solution. The numerical results exhibit no stiffness 
variations near the boundaries throughout the entire simulation timespan. Therefore, we conclude 
that the surface node method allows to effectively solve elastodynamic peridynamic problems 
involving Neumann boundary conditions, with improved accuracy near the boundaries. 
Introduction to peridynamics 
Peridynamics (PD) is a nonlocal continuum theory based on integro-differential equations in which 
discontinuities, such as cracks, in the displacement field can arise and evolve without mathematical 
inconsistencies [1,2]. In a PD body 𝐵𝐵, two points interact through a so-called bond if their distance 
is smaller than 𝛿𝛿, named horizon size. The PD equation of motion for a generic point 𝑥𝑥 at a time 
instant 𝑡𝑡 in a 1D, homogeneous, linear elastic body [3] is given as 

�̈�𝑢(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣2 ∫ 𝑢𝑢�𝑥𝑥′,𝑡𝑡�−𝑢𝑢(𝑥𝑥,𝑡𝑡)
𝛿𝛿(𝑥𝑥′−𝑥𝑥)2

 
𝐻𝐻𝑥𝑥

d𝑥𝑥′, (1) 

where 𝐻𝐻𝑥𝑥 = {𝑥𝑥′ ∈ 𝐵𝐵: |𝑥𝑥′ − 𝑥𝑥| ≤ 𝛿𝛿} is the set of points 𝑥𝑥′ interacting with point 𝑥𝑥, 𝑢𝑢 is the 
displacement, �̈�𝑢 is the acceleration, and 𝑣𝑣 is the wave speed. 

By using the meshfree method with a uniform grid spacing ∆𝑥𝑥 [4], in which every node 
represents a cell of length ∆𝑥𝑥 (see Fig. 1), Eq. 1 is discretized in space as 

�̈�𝑢(𝑥𝑥𝑖𝑖, 𝑡𝑡) = 𝑣𝑣2

𝛿𝛿
∑ 𝑢𝑢�𝑥𝑥𝑗𝑗,𝑡𝑡�−𝑢𝑢(𝑥𝑥𝑖𝑖,𝑡𝑡)

�𝑥𝑥𝑗𝑗−𝑥𝑥𝑖𝑖�
2𝑗𝑗∈𝐻𝐻𝑖𝑖 𝛽𝛽𝑖𝑖𝑗𝑗∆𝑥𝑥 , (2) 

where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 are respectively the coordinates of node 𝑖𝑖 and any node 𝑗𝑗 within the neighborhood 
𝐻𝐻𝑖𝑖 of node 𝑖𝑖, and 𝛽𝛽𝑖𝑖𝑗𝑗 is the quadrature coefficient, namely the fraction of cell of node 𝑗𝑗 which lies 
within the neighborhood 𝐻𝐻𝑖𝑖 [5]. The explicit central difference method is used for time integration 
[4]: 
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 𝑢𝑢(𝑥𝑥𝑖𝑖, 𝑡𝑡𝑛𝑛+1) = 2𝑢𝑢(𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑛𝑛) − 𝑢𝑢(𝑥𝑥𝑖𝑖, 𝑡𝑡𝑛𝑛−1) + (𝑣𝑣∆𝑡𝑡)2

𝛿𝛿
∑ 𝑢𝑢�𝑥𝑥𝑗𝑗,𝑡𝑡�−𝑢𝑢(𝑥𝑥𝑖𝑖,𝑡𝑡)

�𝑥𝑥𝑗𝑗−𝑥𝑥𝑖𝑖�
2𝑗𝑗∈𝐻𝐻𝑖𝑖 𝛽𝛽𝑖𝑖𝑗𝑗∆𝑥𝑥 , (3) 

where ∆𝑡𝑡 is the time step size and 𝑛𝑛 stands for the index of the current time step. 

 
Figure 1: Each node (black dots) in the peridynamic body represents a cell of length 𝛥𝛥𝑥𝑥 and 

interacts with all the nodes within its neighborhood through bonds (red lines). 
As shown in Fig. 1, the nodes near the boundary of the body have an incomplete neighborhood. 

Due to this fact, the stiffness properties of the nodes close to the boundary are different from those 
of the nodes in the bulk. This undesired phenomenon is called PD surface effect [6-9]. 
Furthermore, boundary conditions in PD models should be imposed over a finite-thickness layer, 
in contrast with experimental measurements which are performed only at the boundary. Therefore, 
we use the Surface Node Method (SNM) to solve these issues [7-9]. 
Overview of the Surface Node Method 
As shown in Fig. 2, the fictitious nodes are added in the peridynamic model to complete the 
neighborhoods of the interior nodes near the boundaries of the body. Furthermore, the surface 
nodes are introduced at the boundaries of the body to impose the boundary conditions. 

 
Figure 2: The fictitious nodes (empty dots) are introduced to reduce the PD surface effect by 

completing the neighborhoods of the interior nodes (solid dots). The surface nodes (solid 
squares) are introduced to impose the peridynamic boundary conditions through the fictitious 

bonds (red dashed lines). 
The displacements of the fictitious nodes are determined by extrapolation from the 

displacements of the interior nodes. By using, for example, the linear Taylor-based method [7-9], 
the displacement of any fictitious node 𝑓𝑓 is given as 

 𝑢𝑢�𝑥𝑥𝑓𝑓 , 𝑡𝑡𝑛𝑛� = 𝑢𝑢(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑛𝑛) + �𝑥𝑥𝑓𝑓 − 𝑥𝑥𝑠𝑠�
𝑢𝑢(𝑥𝑥𝑠𝑠,𝑡𝑡𝑛𝑛)−𝑢𝑢�𝑥𝑥𝑝𝑝,𝑡𝑡𝑛𝑛�

𝑥𝑥𝑠𝑠−𝑥𝑥𝑝𝑝
 , (4) 

where 𝑠𝑠 is the index of the closest surface node and 𝑝𝑝 is the index of the interior node closest to 
that surface node. 

The surface nodes do not have interactions (bonds) with other nodes, the state of the fictitious 
bonds crossing them is governed by the equation of the force flux [7-9]: 

𝜏𝜏(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑛𝑛) = 𝑣𝑣2

𝛿𝛿
∑ 𝑢𝑢�𝑥𝑥𝑗𝑗,𝑡𝑡𝑛𝑛�−𝑢𝑢(𝑥𝑥𝑖𝑖,𝑡𝑡𝑛𝑛)

�𝑥𝑥𝑗𝑗−𝑥𝑥𝑖𝑖�
2𝑖𝑖𝑗𝑗∈Ι 𝛽𝛽𝑖𝑖𝑗𝑗Δ𝑥𝑥2, (5) 

where 𝜏𝜏(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑛𝑛) is the force flux at the surface node 𝑠𝑠 and Ι is the set of all the fictitious bonds with 
positive direction crossing the boundary at 𝑥𝑥𝑠𝑠. Thanks to Eq. 5, constraints and loads can be applied 
to the surface nodes as one would do in a local model. 
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Numerical example 
For the first time, we present a numerical example of a peridynamic model making use of the SNM 
to solve an elastodynamic problem involving Neumann boundary conditions. The initial boundary 
value problem is given as 

 

⎩
⎪
⎨

⎪
⎧�̈�𝑢(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣2

𝛿𝛿 ∫
𝑢𝑢�𝑥𝑥′,𝑡𝑡�−𝑢𝑢(𝑥𝑥,𝑡𝑡)

(𝑥𝑥′−𝑥𝑥)2
 
𝐻𝐻𝑥𝑥

d𝑥𝑥′                         for  0 < 𝑥𝑥 < ℓ,   𝑡𝑡 > 0 ,

𝑢𝑢(0, 𝑡𝑡) = 0, 𝜏𝜏(ℓ, 𝑡𝑡) = 0                                       for  𝑡𝑡 > 0 ,                       

𝑢𝑢(𝑥𝑥, 0) = 0.02𝑒𝑒−100�
𝑥𝑥−0.5
ℓ �

2

,   �̇�𝑢(𝑥𝑥, 0) = 0      for  0 < 𝑥𝑥 < ℓ ,             

  (6) 

where �̇�𝑢 is the velocity and ℓ is the length of the peridynamic body. The analytical solution is 
computed by means of the method of separation of variables [3]: 

 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = ∑ 0.004√𝜋𝜋
ℓ

∞
𝑚𝑚=1,3,5,… sin �𝑘𝑘𝑚𝑚ℓ

2
� 𝑒𝑒

−𝑘𝑘𝑚𝑚
2

400 sin(𝑘𝑘𝑚𝑚𝑥𝑥) cos�𝑣𝑣𝑡𝑡� 2
𝛿𝛿2

[𝑘𝑘𝑚𝑚𝛿𝛿 Si(𝑘𝑘𝑚𝑚𝛿𝛿) + cos(𝑘𝑘𝑚𝑚𝛿𝛿) − 1] � , (7) 

where 𝑘𝑘𝑚𝑚 = 𝑚𝑚𝜋𝜋
2ℓ

 and Si(∙) is the sine integral function. The analytical solution in Eq. 7, truncated 
at 𝑚𝑚 = 80, will be used as a comparison for the numerical results in Fig. 3. 

 
 

 
Figure 3: Plots of the propagating wave at different instants of time 𝑡𝑡 for the analytical solution 

and the peridynamic models with and without the use of the Surface Node Method (SNM). 
Fig. 3 shows the numerical results of the peridynamic model with and without the use of the 

SNM. If the SNM is not employed, the loads and the constraints are applied directly to the interior 
nodes closest to the boundary. The model parameters used to obtain those results are the following: 
𝑣𝑣 = 5000 m/s, ℓ = 1 m, 𝛿𝛿 = 0.1 m, Δ𝑥𝑥 = 0.001 m, and Δ𝑡𝑡 = 0.2 μs. As shown in Fig. 3, it is 
evident that the model with the SNM provides results closer to the analytical peridynamic solution. 
The major differences are noticeable in the region near the end of the bar, where Dirichlet boundary 
conditions are imposed. However, without employing any boundary correction, non-negligible 
errors are also present at the other end of the bar, where Neumann boundary conditions are applied. 
Thus, the SNM allows to considerably reduce the numerical errors due to the PD surface effect 
and the imposition of the boundary conditions. 
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Conclusions 
In this work, we numerically solved a 1D peridynamic elastodynamic problem involving Neumann 
boundary conditions by using the Surface Node Method (SNM) to mitigate the PD surface effect 
and impose the boundary conditions. The analytical solution to this problem has been derived 
thanks to the method of separation of variables. The numerical results show that the use of the 
SNM significantly reduces the errors near the boundaries of the body when compared to the 
corresponding model without boundary corrections, both where Dirichlet and Neumann boundary 
conditions are applied. 
Acknowledgements. The authors would like to acknowledge the support they received from 
MIUR under the research project PRIN2017-DEVISU and from the University of Padova under 
the research project BIRD2020 NR.202824/20. 
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