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Abstract. In this study, we employ low and high-fidelity finite beam elements to conduct 
geometrical nonlinear transient analyses of composite and sandwich structures. The equations of 
motion for various structural theories are derived in a total Lagrangian scenario using the Carrera 
Unified Formulation. The unified formalism's three-dimensional nature enables us to include all 
components of the Green-Lagrange strain tensor. To solve the equations, we utilize the Hilber-
Hughes-Taylor (HHT)-α algorithm in conjunction with a Newton-Raphson procedure. We present 
the dynamic response of a sandwich stubby beam subjected to a step load, calculated using both 
equivalent-single layer and layer-wise approaches. Additionally, we discuss the effects of 
geometrical nonlinearity. 
Introduction 
In recent decades, the aerospace, automotive, and other engineering fields have faced new 
challenges that necessitate the adoption of sophisticated and lightweight components. These highly 
flexible structures are extensively utilized in various engineering applications as they can exhibit 
large displacements and rotations without undergoing plastic deformations. Furthermore, many of 
these components comprise sandwich structures made of composite materials to ensure a 
significant strength-to-weight ratio. As highlighted in numerous scientific papers [1,2], analyzing 
these structural configurations requires refined kinematic theories that can overcome the well-
known limitations of the Euler-Bernoulli and the first-order-shear deformation theories. 

This research aims to analyze the nonlinear dynamic behavior of composite and sandwich 
structures using variable-fidelity one-dimensional finite elements. The mathematical models are 
derived using the Carrera Unified Formulation (CUF). This hierarchical formalism enables the 
selection of the order of the structural model as an input of the analysis. Therefore, any theory can 
be obtained by arbitrarily expanding the generalized variables. Specifically, this work employs 
Lagrange (LE) and Taylor (TE) polynomials to develop kinematic expansions. According to the 
layer-wise concept, the LE models allow for the independent discretization of each lamina. In 
contrast, the Taylor-based models homogenize the cross-section properties with polynomials of 
arbitrary orders. Regardless of which theory is adopted, the governing equations and the related 
finite element arrays are formulated in terms of Fundamental Nuclei (FNs), the invariants of the 
methodology. The nonlinear equations are formulated using the total Lagrangian approach and 
solved using a suitable Newton-Raphson method. We utilize the Hilber-Hughes-Taylor (HHT)-α 
algorithm as the implicit time integration scheme to evaluate the nonlinear dynamic response. This 
algorithm proves particularly effective in stabilizing the time integration process under highly 
nonlinear effects. 

To highlight the relevant discrepancies between low- and high-fidelity solutions in studying the 
response of laminated beams, we consider a stubby sandwich structure characterized by a 
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significant degree of anisotropy between the core and external layers. Moreover, we have 
compared geometrical linear and nonlinear solutions for two different load magnitudes. 
Unified formulation of geometrical nonlinear beam theory 
The theoretical basis required for solving transient analyses in geometrically nonlinear regimes 
can be found in [3]. However, to ensure the self-contained nature of this work, we provide some 
basic equations here. Based on the one-dimensional finite element unified formulation, we express 
the displacement vector 𝒖𝒖𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)  =  (𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦,𝑢𝑢𝑧𝑧) as a sum of products between cross-sectional 
(defined over the x-z plane) functions 𝐹𝐹𝜏𝜏 (𝑥𝑥, 𝑧𝑧), finite element shape functions 𝑁𝑁𝑖𝑖 (𝑦𝑦)  (defined 
over the y-axis) and the nodal unknown vector  𝒒𝒒𝜏𝜏𝑖𝑖(𝑡𝑡) 
𝒖𝒖(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) =  𝐹𝐹𝜏𝜏 (𝑥𝑥, 𝑧𝑧)𝑁𝑁𝑖𝑖 (𝑦𝑦)𝒒𝒒𝜏𝜏𝑖𝑖(𝑡𝑡)                            𝜏𝜏 =  1, … ,𝑀𝑀 and 𝑖𝑖 =  1, … , 𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒  (1) 

In Eq. 1, the subscripts indicate summation, while 𝑀𝑀 and 𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒 represent the number of functions 
included in the structural model and the number of nodes belonging to a single finite beam element, 
respectively. As previously mentioned, the geometrically nonlinear FE governing equations are 
obtained according to a total Lagrangian formulation by including all Green–Lagrangian strain 
tensor components. The strain–displacement relation and the constitutive law reported in Eq. 2 are 
obtained using the linear and nonlinear differential operators, 𝒃𝒃𝑒𝑒 and 𝒃𝒃𝑛𝑛𝑒𝑒, respectively, and the 
stiffness matrix for linear elastic materials, 𝑪𝑪. 
𝜺𝜺 = (𝒃𝒃𝑒𝑒 + 𝒃𝒃𝑛𝑛𝑒𝑒)𝒖𝒖                            𝝈𝝈 = 𝑪𝑪 𝜺𝜺  (2) 

By substituting Eq. 1 and Eq. 2 into the principle of virtual work, it becomes possible to express 
the virtual variations of both strain energy (𝛿𝛿𝐿𝐿𝑖𝑖𝑛𝑛𝑖𝑖) and the work done by inertial forces (𝛿𝛿𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒)  
and external loads (𝛿𝛿𝐿𝐿𝑒𝑒𝑥𝑥𝑖𝑖)  in the CUF formalism. 
𝛿𝛿𝐿𝐿𝑖𝑖𝑛𝑛𝑖𝑖 = 𝛿𝛿𝒒𝒒𝑠𝑠𝑠𝑠𝑇𝑇 𝑲𝑲𝑠𝑠

𝑖𝑖𝑠𝑠𝜏𝜏𝑠𝑠𝒒𝒒𝜏𝜏𝑖𝑖                               
𝛿𝛿𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒 = 𝛿𝛿𝒒𝒒𝑠𝑠𝑠𝑠𝑇𝑇 𝑴𝑴𝑖𝑖𝑠𝑠𝜏𝜏𝑠𝑠�̈�𝒒𝜏𝜏𝑖𝑖                           (3) 
𝛿𝛿𝐿𝐿𝑒𝑒𝑥𝑥𝑖𝑖 = 𝛿𝛿𝒒𝒒𝑠𝑠𝑠𝑠𝑇𝑇 𝑭𝑭𝑠𝑠𝑠𝑠                              

The FNs of the secant stiffness and mass matrix are denoted as 𝑲𝑲𝑠𝑠
𝑖𝑖𝑠𝑠𝜏𝜏𝑠𝑠 and  𝑴𝑴𝑖𝑖𝑠𝑠𝜏𝜏𝑠𝑠, respectively, 

while 𝑭𝑭𝑠𝑠𝑠𝑠 represents the fundamental nucleus of the loading vector. Here, the indexes 𝑠𝑠 and 𝑗𝑗 are 
adopted for the virtual variations of the displacements and have the same bounds as 𝜏𝜏 and 𝑖𝑖. The 
assembled matrices and vectors associated with any arbitrary structural model are constructed by 
permuting these four indexes. Based on this notation, the equations of motion are 
𝑴𝑴�̈�𝒒(𝑡𝑡) + 𝑲𝑲𝒔𝒔(𝒒𝒒)𝒒𝒒(𝒕𝒕) = 𝑭𝑭(𝑡𝑡)                             (4) 

Equation 4 is solved by using the Newton-Raphson method and the HHT-α implicit time 
integration scheme. For a dynamic conservative problem, the linearization of the residual nodal 
forces leads to  
𝛿𝛿(𝛿𝛿𝐿𝐿𝑖𝑖𝑛𝑛𝑖𝑖 + 𝛿𝛿𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒 − 𝛿𝛿𝐿𝐿𝑒𝑒𝑥𝑥𝑖𝑖) =   𝛿𝛿𝒒𝒒𝑠𝑠𝑠𝑠𝑇𝑇 �𝑲𝑲0

𝑖𝑖𝑠𝑠𝜏𝜏𝑠𝑠 + 𝑲𝑲𝑇𝑇1
𝑖𝑖𝑠𝑠𝜏𝜏𝑠𝑠 + 𝑲𝑲 𝜎𝜎

𝑖𝑖𝑠𝑠𝜏𝜏𝑠𝑠�𝛿𝛿𝒒𝒒𝜏𝜏𝑖𝑖 + 𝛿𝛿𝒒𝒒𝑠𝑠𝑠𝑠𝑇𝑇 𝑴𝑴𝑖𝑖𝑠𝑠𝜏𝜏𝑠𝑠𝛿𝛿�̈�𝒒𝜏𝜏𝑖𝑖 =
                                                 =  𝛿𝛿𝒒𝒒𝑠𝑠𝑠𝑠𝑇𝑇 𝑲𝑲𝑇𝑇

𝑖𝑖𝑠𝑠𝜏𝜏𝑠𝑠𝛿𝛿𝒒𝒒𝜏𝜏𝑖𝑖 + 𝛿𝛿𝒒𝒒𝑠𝑠𝑠𝑠𝑇𝑇 𝑴𝑴𝑖𝑖𝑠𝑠𝜏𝜏𝑠𝑠𝛿𝛿�̈�𝒒𝜏𝜏𝑖𝑖                           
(5) 

In Eq. 5, 𝑲𝑲𝑇𝑇
𝑖𝑖𝑠𝑠𝜏𝜏𝑠𝑠 represents the FN of the tangent stiffness matrix (see [4]). 

Results 
Figure 1 and Table 1 present the dimensions, material properties, boundary conditions, and loading 
conditions of the sandwich beam. The structure was subjected to a pressure load that was constant 
in time but variable in magnitude. 
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Figure 1: the cantilever sandwich beam. 

Table 1: dimensions and material data of the sandwich beam. 

Geometrical data Material data Face Core 
L = 0.1 [m] Young’s modulus, E [GPa] 200 0.66 
h = b = 0.02 [m] Poisson’s ratio 0.27 0.3 
hc = 0.014 [m] Density [kg/m3] 7800 60 

 
The finite element models utilized in this study consisted of seven 4-node beam elements placed 

along the longitudinal axis. Transient analyses were performed using the Taylor-based expansions 
of second (TE2) and third order (TE3) - as well as a layer-wise model consisting of three (one per 
layer) bi-cubic Lagrange elements (3-LE16) placed over the cross-section. The degrees of freedom 
(d.o.f.) corresponding to the TE2, TE3 and 3LE16 solutions were 396, 660, and 2640, respectively. 
In Figure 2, the transverse deflection of the sandwich beam is depicted for two different values of 
the applied pressure. As expected, the equivalent-single-layer solutions, although improved 
compared to classical beam models, significantly underestimate the deformation of the structure 
when compared to the layer-wise prediction. Additionally, it is noteworthy that both geometrically 
linear and nonlinear approaches provide almost indistinguishable results for relatively small values 
of p0, irrespective of the structural theory employed. However, it can be observed that with the 
increase of the load value, the linear and nonlinear curves obtained using the 3-LE16 model differ 
significantly. This effect can be attributed to the superior ability of the layer-wise model to 
accurately describe the deformation and stress fields compared to the equivalent-single-layer 
kinematics. 
Summary 
This work presented preliminary results concerning composite and sandwich structures' 
geometrical nonlinear transient responses calculated with one-dimensional finite element models 
based on various kinematic assumptions. The comparisons between low- and high-fidelity 
solutions demonstrated the importance of accurately describing the cross-section deformations, 
especially in the nonlinear regime. Further results will be provided on composite laminated 
structures subjected to different loads. 
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Figure 2: transient responses of the sandwich beam for two pressure values. 
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