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Abstract. In this work an on-working Structural Health Monitoring system for impact detection 
on RC airplane is proposed. The method is based on the propagation of Lamb waves in a metallic 
structure on which PZT sensors are bonded for receiving the corresponding signals. After the 
detection, Machine Learning algorithms (polynomial regression and neural networks) are applied 
to the data obtained by the processing of the acquired ultrasounds in order to characterize the 
impacts. Furthermore, this work presents the development of a mini-equipment for acquisition and 
data processing based on a Raspberry Pi micro-computer.  
Introduction 
The localisation of impacts on aerospace structures is one of the main goals of Structural Health 
Monitoring (SHM) systems [1]. Even a small impact at low speed can cause a crack that can 
become serious damage in the long run. Therefore, SHM has reached a certain level of maturity 
for what concerns the choice of the best sensor network for the impact detection [2],[3]. 
Furthermore, other works focus on the application of machine learning (ML) algorithms for the 
elaboration of acquired data and the prediction of the impact localisation and of the damage [4]-
[8]. In the present work a ML model is built in order to characterize the real impacts on a fixed 
specimen in laboratory and then it is tested in the presence of vibrations due to the engine of a 
balsa wood RC model of the Piper J3 CUB airplane. 
Experimental Setup 
In a first activity, low speed impacts were performed on a 25×25 cm specimen made of aluminium 
alloy with density 2700 kg/m3, elastic modulus E = 72 GPa, Poisson’s ratio v = 0.33 and thickness 
= 1.2 mm. Four piezoelectric ceramic PZT Pb[𝑍𝑍𝑟𝑟𝑥𝑥Ti1−x]O3 sensors [9] (diameter equal to 10 mm) 
were bonded on the surface, at the four vertices of a 12.5×12.5 cm square area. The impacts were 
performed inside the area above by dropping a steel ball from the top of a “drop tower” built up in 
the AeroSpace Structural Engineering Lab (AS.S.E. Lab – University of Salento) [10]. The waves 
generated by the impacts were processed by a Picoscope 6402D oscilloscope connected to an Intel 
CPU workstation running Picoscope6 software. The processed data became the input for a ML 
model implemented in MATLAB, as described below. In a second activity, the vibration due to 
the engine were detected by the sensors bonded on the fuselage and the wings of a balsa wood RC 
model of the Piper J3 CUB airplane (Fig. 1). The vibrations were processed by a Pimoroni HAT 
Explorer Pro connected to an ARM CPU Raspberry Pi minicomputer running Python software. 
The processed data became the input for a ML model implemented in C++ through MATLAB 
Coder, run on the same Raspberry Pi. 
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Fig. 1. Experimental setup: acquisition of the vibrations via Raspberry Pi 

Machine Learning Application 
In the first activity, L impacts were performed and, for each impact, four ToFs (Time of Flight) 
were calculated on the basis of the Lamb waves detected by the four PZT sensors. The ToF was 
defined as the arrival time of A0 mode of the Lamb wave to a sensor, in the range 0-40 kHz, where 
the A0 mode is dominant, while the S0 can be considered neglectable [11-12]. The ToF was 
calculated by evaluating the Short Time Fourier Transform (STFT) of the signals in the range 0-
40 kHz. Because of the absence of an absolute clock signal, the differences t1, t2, t3 between the 
ToFs at three sensors and the ToF at one reference sensor were chosen as the features for the ML 
application. After the evaluation of the ToFs, a dataset was built, made of L rows corresponding 
to the samples (impacts points) and five columns containing, for each sample, the actual 
coordinates (x,y) and the three ToF differences t1, t2, t3. Two supervised ML algorithms, 
polynomial regression (PR) and artificial neural network (ANN), were applied to this dataset, in 
order to build models able to predict the position of an unknown impact, and to identify the best 
one. Considering a PR algorithm, the coordinates (x,y) of the impact are polynomial functions of 
the three ToF differences t1, t2, t3. The building of the model consists of identifying the degree d 
and the coefficients 𝜃𝜃 in order to best fit a set of given data: 
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Fixing the polynomial degree d and extending the above equations to L impacts, it is possible 
to use the matrix form: 

U = TB (3) 

where: U is L×2 matrix, in which the columns contain the coordinates for the L impacts 
respectively; T is L×p matrix, in which the p columns contain the so-called polynomial features 
(ToF differences, their power and relative cross multiplication); B is p×2 Design Matrix of weight 
coefficients 𝜃𝜃. A subset of M impacts was used as training data, in order to calculate the design 
matrix B as specified in [13]. The model was validated by estimating the Mean Radial Error (MRE) 
over the M training data, the N test and total L data, where the Radial Error (RE) was defined as 
the Euclidean distance between the actual coordinates (xi,yi) and the coordinates (x̅i,ȳi) calculated 
by the algorithm for the ith impact. Considering an ANN, the coordinates (x,y) of the impact are 
calculated in the basis of the three ToF differences t1, t2, t3 by computations in succession through 
connected nodes called neurons. Each neuron performs the computation of an intermediate output 
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z using the input vector t, the vector of weights w and the vector of biases b and the computation 
of the output a as an activation function g (a linear function in a regression problem, like a sigmoid 
one) of z: 

𝑧𝑧 = 𝑤𝑤𝑇𝑇𝑡𝑡 + 𝑏𝑏 (4) 

𝑎𝑎 =  𝑔𝑔(𝑧𝑧) (5) 

The neurons are aggregated into layers and a shallow neural network (SNN) was chosen, 
consisting of only one hidden layer. As for PR, a subset of M impacts was used for the training 
phase of the network, that consists of an iterative procedure in order to set the weights w and the 
biases b of each neuron. For this procedure, three learning algorithms were compared: Levenberg-
Marquardt, Bayesian Regularization and Scaled Conjugate Gradient [14]-[16]. As for PR, the 
model was validated by estimating the Mean Radial Error (MRE). 
Analysis and Results 
About the PR, in order to generalise the model, the calculation of B and the corresponding MRE 
was performed by the mean in a K-Fold cross validation procedure, considering the polynomial 
degrees from 1 to 7 and, for each degree, 5 different combinations of training/test sets with an 
80/20 ratio. In this calculation, L (total number of impacts) was equal to 167, M (number of training 
impacts) was equal to 134, N (number of test impacts) was equal to 33. The best model, in terms 
of generalising, was chosen considering both minimum total MRE and minimum gap between 
training and test MREs: this condition occurred with degree equal to 3. Moreover, the threshold 
110 appeared to be the best training size: for bigger values of size there was no littler MRE. After 
the evaluation of the best degree and training size, 50 test cases were implemented, with a main 
result in terms of MRE on the entire dataset equal to 1.50 mm. About the SNN, the performances 
were evaluated considering all the three learning algorithms above, increasing the complexity of 
the model in terms of number of neurons in the hidden layer (10, 20, 30, 40, 50). The increasing 
in neurons number did not lead to a significant improvement of MRE, while the best training 
algorithm was the Bayesian Regularization. After the evaluation of the best neurons number and 
training algorithm, 50 test cases were implemented in MATLAB [17], with a training/test ratio 
equal to 70/30 (L = 167, M = 117, N = 50) and a main result in terms of MRE on the entire dataset 
equal to 1.20 mm. In a second activity, the vibrations due to the engine of a balsa wood RC model 
were acquired and processed by a Pimoroni HAT Explorer Pro connected to an ARM CPU 
Raspberry Pi minicomputer. The processed waveforms were used to reproduce the same vibrations 
on the 25×25 cm specimen using a LMS Test Lab shaker. The best ML model (based on SNN 
algorithm) trained and built during the first activity was then tested in presence of vibrations, 
obtaining a similar MRE. The ML model was implemented in C++ through MATLAB Coder, run 
on the same Raspberry Pi. 
Conclusions 
This work focused on the implementation of a SHM system on a balsa wood RC model of the 
Piper J3 CUB airplane. A machine learning model able to predict the location of low-speed impacts 
on aluminium plate was built and it was tested in the presence of the vibrations due to the engine 
of the airplane model. The best algorithm was found to be a shallow neural network trained with 
Bayesian Regularization procedure. The best MRE value was equal to 1.20 mm, configuring the 
model with a 70% training sample ratio and 10 hidden neurons, and a similar MRE was calculated 
in the presence of the vibrations. The results can be considered excellent, because the mean radial 
error falls in an acceptable range if compared to the size of the plates. Furthermore, this work 
presents the development of two innovative mini-equipment: (i) impact detection and wave 
acquisition system via Pimoroni HAT Explorer Pro; (ii) data processing and prediction via ML 
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learning software running on a Raspberry Pi micro-computer. These two mini-systems can be 
considered very efficient because of their performance in terms of precision and for their little size, 
that allows to install it on unmanned aerial vehicles. 
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