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Abstract. Damage identification and localization is fundamental in industrial engineering, since 
it helps perform corrective actions in time to reduce as much as possible system downtime, 
operational costs, perform quick maintenance and avoid failure. Recently, structural health 
monitoring has found in machine learning an extremely useful tool, making the monitoring of 
complex systems more manageable. In this work, composite plates manufactured with the purpose 
of damping vibrations in aerospace structures are experimentally tested; the strong damping 
suddenly reduces the vibrations, leading to responses very similar to one another, without 
noticeable or structured differences between undamaged and damaged plates. To overcome this 
issue, machine learning methods are applied. Decision trees-based methods are chosen since they 
provide a combination of feature selection capabilities and robust classification performances. The 
used methods are decision trees themselves and two boosting methods: AdaBoost and RUSBoost. 
All three methods perform well in identifying damaged plates, the type (thickness damage and 
debonding) and sub-type of damage (thickness/debonding of types A and B). 
Introduction 
Damage is defined as an intrinsic change in geometrical or material characteristics of an 
engineering system that negatively affects its operational life, safety, reliability, and performance 
[1]. The detection, diagnosis, and prognosis of failure can be performed through Structural Health 
Monitoring (SHM). The most challenging step in SHM is damage detection, interpreted as the 
systematic and automatic process of finding the existence of a damage. As Yuan et al. [2] report, 
damage detection has been performed in SHM with two approaches up to now: physics-based and 
data-driven. The former becomes unreliable as the system complexity increases. Improvements in 
computational power and advances in information and sensing technologies allow monitoring of 
many parameters, which opens the path to data-driven approaches. As reported by Avci et al. [3], 
during the last decades, Machine Learning (ML) has been widely applied to SHM, with the 
objective of generating models mapping input patterns in measured sensor data to output targets 
for damage assessment. 

This work is executed in the framework of IDEFISC (IDEntification de FISsures dans les 
Composites) project, aimed at the identification and quantification of damages in composite 
structures with the aid of machine learning methods. The test articles under investigation are 
composite plates consisting of three layers: a metallic, an elastomeric and a composite one, aiming 
to damp the vibrations in aerospace vehicles. Such strong damping leads to a sudden reduction of 
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vibration amplitude, making the responses remarkably similar between healthy and damaged 
plates, impairing the damage identification task. The need of fast and reliable methods paves the 
way to the powerful classification capabilities of machine learning methods, exploited here to 
distinguish which plate is damaged and which not, but also to identify the types (reduction or 
debonding) and sub-types (changes in position) of damages. 
Theoretical framework 
Three machine learning methods are used in this work. The first method is decision trees. They 
have a flowchart-like structure, characterized by nodes, in which a test on an attribute is executed, 
and branches representing the outcome of the test [4]. Each split is executed to maximize the 
information gain, so that the most informative feature is used to determine the status of the sample. 
Decision trees are attractive models because of interpretability, they allow mixing feature types, 
and automatic selection of the optimal feature. However, they tend to overfit when trees are too 
deep. A typical approach to fight overfitting is to build a more robust model through ensemble 
methods: they combine several weak classifiers into a meta-classifier having better generalization 
performances than an individual classifier alone. There are different types of ensemble learning; 
the one used herein is AdaBoost (Adaptive Boosting), in which several decision trees are trained 
in series so that, at each iteration, the training examples are re-weighted to build a more robust 
classifier which learns from the errors of the previous classifier in the ensemble. The final 
prediction combines the outputs of all the weak learners and is taken by majority voting. A 
modification of AdaBoost is used as third method: RUSBoost (Random UnderSampling 
Boosting). It is very effective when the classes are not evenly distributed in the dataset. Instead of 
involving the entire training set (like AdaBoost), RUSBoost takes the basic unit for sampling equal 
to the number of members N in the class with the smaller number of instances in the training data. 
Experimental tests and application of machine learning 
The plates may present two types of purposely made damages: thickness damage, and debonding 
between the aluminum and elastomeric layers. In turn, each damage type appears in two sub-types, 
labeled A and B, in which size and location of the damages change. Eleven plates are tested, in 
total. Three plates are undamaged, while the remaining ones have one sub-type of damage. 

Global vibration tests are executed on the plates to obtain their response in both the time and 
frequency domains. The test articles are clamped on the short side, they are excited with a 1.5 
second sweep sine signal provided through an electrodynamic shaker on the aluminum part, 
ranging from 5 to 5000 Hz. Velocity measurements are performed with a Polytec LDV (Laser 
Doppler Vibrometer) on the composite part in 187 points. The frequency response of one point is 
displayed in Fig. 1: there are no noticeable differences among the several damage conditions. 

The dataset is made of 10 plates and 25 features, extracted from both time and frequency 
measurements, such as summary statistics, frequency centroid, roll-off frequency, time of flight, 
etc. The features are estimated for all the measured points, thus the entire training set contains 
1870 observations. Three identification tasks are performed: damage identification, damage type 
identification, and damage sub-type identification. Thus, a label is assigned to each observation, 
corresponding to the status of the plate. The generalization capabilities of the machine learning 
methods are checked considering one plate at time for testing. Hence, all the observations of one 
plate are extracted from the dataset to generate the test set, and all the remaining observations, 
belonging to all the other plates, are shuffled and constitute the training set. This procedure is 
performed several times, one for each plate. 
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Figure 1 - Mobility of the tested plates. 

For sake of brevity, the results of all the tasks are summarized in Tables 1-3, where the 
acronyms DT, AB, and RUSB stand for Decision Trees, AdaBoost, and RUSBoost, respectively. 
Plate 1, without damage, is used as baseline for the estimation of those features requiring the 
comparison of the test plate with an undamaged plate, thus it cannot be used for machine learning. 
The test plates are reported along the rows, the columns refer to the methods; each cell provides 
the proportion of correctly classified measurements with respect to the total number of 
measurements performed for each plate. The results show that not all the labels are correctly 
predicted: Plate 8 always provide misclassifications, and the ratio of wrong predictions increases 
as the complexity of the task increases. However, the overall performance capabilities are very 
good, since the majority of the measurements are associated with a correct prediction of the status 
of the plates.  

 
Plate ID DT AB RUSB 
Plate 2 187/187 187/187 187/187 
Plate 3 187/187 0/187 187/187 
Plate 4 187/187 187/187 187/187 
Plate 5 187/187 187/187 187/187 
Plate 6 187/187 187/187 187/187 
Plate 7 187/187 187/187 187/187 
Plate 8 0/187 0/187 0/187 
Plate 9 187/187 187/187 187/187 
Plate 10 187/187 187/187 187/187 
Plate 11 187/187 187/187 187/187 

 

Plate ID DT AB RUSB 
Plate 2 187/187 187/187 187/187 
Plate 3 187/187 0/187 187/187 
Plate 4 187/187 187/187 187/187 
Plate 5 187/187 187/187 187/187 
Plate 6 187/187 187/187 187/187 
Plate 7 187/187 187/187 187/187 
Plate 8 0/187 0/187 0/187 
Plate 9 187/187 187/187 187/187 
Plate 10 187/187 0/187 187/187 
Plate 11 0/187 187/187 187/187 

 

Table 1 - Classification performances of DTs, 
AB, and RUSB, undamaged-damaged 

classification task. 

Table 2 - Classification performances of DTs, 
AB, and RUSB, damage type identification 

task. 
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Table 3 - Classification performances of DTs, AB, and RUSB, damage subtype identification 
task. 

Plate ID DT AB RUSB 
Plate 2 187/187 187/187 187/187 
Plate 3 187/187 0/187 187/187 
Plate 4 187/187 187/187 187/187 
Plate 5 187/187 187/187 187/187 
Plate 6 187/187 187/187 187/187 
Plate 7 187/187 187/187 187/187 
Plate 8 0/187 0/187 0/187 
Plate 9 187/187 187/187 187/187 
Plate 10 187/187 0/187 187/187 
Plate 11 0/187 0/187 187/187 

 
Conclusions 
This work's main aim is to classify the health status of plates characterized by strong damping. 
Such a damping explains the responses of experimental vibration tests, remarkably similar among 
plates with and without damages. However, what is undistinguishable for the human eye provides 
valuable information for machine learning techniques. In fact, the application of three methods, 
namely decision trees, AdaBoost, and RUSBoost, proves that data-driven methods have excellent 
classification capabilities: the presence of damage itself, damage type and sub-type are correctly 
predicted with high accuracy. This opens the way to new, more advanced types of tasks, such as 
identification of smaller damages, as well as their localization. 
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