The Use of Computer Simulation in the Management of Subcontractors and Outsourced Services

KRYNKE Marek^{1, a},

¹Department of Production Engineering and Safety, Faculty of Management, Czestochowa University of Technology, Al. Armii Krajowej 19b, 42-218 Czestochowa, Poland

^a marek.krynke@pcz.pl*

Keywords: Simulation, Flexsim, Optimization, Production Management

Abstract. The paper examines cooperation among production companies to fulfill orders beyond plant capacity by selecting subcontractors. The developed model focuses on planning the production process to minimize total production costs by deciding where to produce goods before they are actually produced. The concept utilized a 3D FlexSim simulation environment, specifically the built-in optimization module OptQuest, to address the problem. The paper covers the key steps in creating the simulation model and presents the simulation results.

Introduction

In the case of production companies whose processes depend on cooperation with external entities, it is important to take into account the scope of cooperation, starting from the management of raw materials, materials or semi-finished products, to the adoption of a production plan, the production itself, along with the registration of service, transport and storage costs. A cooperator's production plans should be included in the operational schedule of in-house production [1, 2]. Cooperation in the production process is perceived by many production companies as an opportunity to more effectively adapt to the evolution of production systems [3–5]. The role of cooperation in the production of products is growing, especially in very dynamic markets with variable demand and a short product life cycle [6]. This is because for such markets it is sufficient to apply a deferred production strategy and to transfer the last stage of production from industrial enterprises to distribution companies. [7-9].

In the management of the production process, often a large part of the planning process concerns the selection of a subcontractor in terms of its efficiency and low cost, high quality and value of the delivered finished products, as well as safety. [10-12]. Therefore, it is important to establish a set of procedures/recommendations for pricing, selecting contractors, and measures to monitor and improve supplier relation. One should also not forget about the management processes of own means of production, their availability and own costs of process maintenance [13-18]. The development of modern computer technology and many fields of science, especially in the field of production engineering, made it possible to virtually simulate real production processes [19]. Due to the use of comprehensive IT solutions in the field of modeling and simulation of manufacturing processes, a significant economic benefit is achieved, especially in mass production [20]. Therefore, more and more IT solutions are appearing in the area of tracking, monitoring and visualizing the course of production processes in real time [21,22]. Many IT tools are at the disposal of managers today, incl. Technomatix Plant Simulation, Matlab/Simulink, Enterprise Dynamics, Arena, FlexSim, Vensim, Excel/Solver and others. The effectiveness of the production planning and scheduling processes, in particular at the stage of simulating virtual models of production systems, depends primarily on the mathematical models and optimization algorithms used [23]. In complex production systems, this efficiency is translated primarily into achieving a lower level of production costs, shorter production cycle times with a simultaneous high efficiency of data processing. [24]. It is also important that the digital model reacts quickly to changes [25].

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under license by Materials Research Forum LLC.

Outsourcing tasks to external subcontractors is becoming increasingly common within enterprises due to the high level of specialization required for technological activities and the need to maintain high-quality standards [26-28].

Typical subcontracting involves technological tasks that either demand high qualifications and expensive machinery or impose a significant environmental burden, necessitating certified safeguards and purification systems [29]. Among the highly specialized activities in this regard, metal processing [30-32] coupled with surface treatment [33], including the application of DLC coatings [34-36], can be mentioned. Additionally, the production of high-pressure components [37,38] requires diagnostic control of structural connections [39,40] and certification.

In this manner, end manufacturers of machinery [41], equipment, or railway rolling stock [42] essentially serve as integrators, responsible for ensuring the sustained reliability and stable performance of the final products throughout their intended lifespan, irrespective of wear and tear [43].

Such an approach requires meticulous optimization of design and production processes, as well as monitoring them both internally and at subcontractors and service providers. Given the complexity of the processes and the numerous factors to consider, essential tools include dimensionality reduction methodologies [44] and design of experiments [45-47], including increasingly popular nonparametric approaches [48-50].

The Essence of Simulation and Optimization

Computer modeling and simulation is primarily used as a decision support method [51]. However, simulation techniques are most often used when analytical solutions are too difficult or time-consuming [52,53]. Simulation modeling is useful in many fields of science. It is used to learn about a given process by replacing it with a simplified system that reflects its selected features. The modeling process is defined by the determination of the mathematical relationship between the output value y, and input value x_l , x_2 , x_3 , ..., x_n . In the simplest version, it is the formula: $y = f(x_l, x_2, x_3, ..., x_n)$, where the variables: $x_l, x_2, x_3, ..., x_n$, are input values, while y is the output value of the tested system.

There can be more than one input and output variable, it all depends on the complexity of the system / process. The simulation model can be compared to the so-called a black box that can have n input variables and m output variables [54].

Simulation will help in direct identification of cost reduction areas of efficiency improvement, it can also play an important role in risk analysis [46]. The simulation also indicates scenarios of the development of the situation based on the proposed actions [55]. For example, simulation will not be able to predict specific customer requirements for products and services, but it can be used to assess the impact of demand volatility on the ability to respond to this variability in a production system.

Optimizing a process by simulation means finding the best configuration of the input variables that match the best value [56]. Optimization usually consists of maximizing or minimizing a selected parameter [57]. After building each simulation model, it should be validated, i.e. its suitability for the given application assessed. If it turns out that the model correctly reflects reality, then only then can be proceeded to designing experiments and further data analysis [58, 59].

Methodology – Case Study

The purpose of the paper is to discuss the model of cooperation from the perspective of a group of production companies for the purpose of comprehensive order fulfillment. The study took into account the problem of selecting subcontractors selected to fulfill an order exceeding the production capacity of the plant. The developed model focuses on planning the production process when the goods have not yet been produced. Therefore, at the time of deciding where to produce it, so that the total production costs are as low as possible. In this concept, a 3D FlexSim simulation

environment was used to solve the problem – 3D FlexSim with built-in optimization module OptQuest.

As part of the research analysis, the following problem was considered. The production plant must fulfill a production order for the production of 10,000 pcs. of products. The production resources available in the form of available machines are insufficient to fulfill this order, which is why the company wants to hire subcontractors. The x1 production system is owned by the company, while the subsequent systems marked as $x2 \div x10$ are rented, hence the different costs of their use. Unit costs and capacities of individual production systems are summarized in Table 1.

Enterprise	Performance	Cost
	[pcs/hour]	[monetary units/hour]
x1	10÷11	100
x2	15÷17	175
x3	20÷23	200
x4	17÷18	180
x5	14÷15	160
x6	18÷20	178
x7	22÷25	205
x8	16÷18	180
x9	25÷26	210
x10	8÷9	155

Table 1 Unit co	est and efficiency	of individual	production systems
	σι απα εγμειεπεγ		production systems

The implemented product production process can be presented in the FlexSim environment using the model shown in Fig. 1. In this model, standard objects from the program library were used, which were programmed in accordance with the task conditions. Intuitively, it can be assumed that the function of the production systems of individual plants should be performed by *Processors*. Process time for individual production systems is set according to their capacity. *Source* objects are usually generators of many flow elements. In this model, the source works in *Arrival Sequence* mode. In this particular case, the flow element will symbolize the number of items produced per unit of time. This is the variable that will be used in the optimization process, as well as the place where the optimizer will generate results from subsequent iterations. The OptQuest optimizer from OptTek built into the FlexSim platform will be used to solve the example problem. Its operation is based on neural networks and metaheuristic algorithms [35].

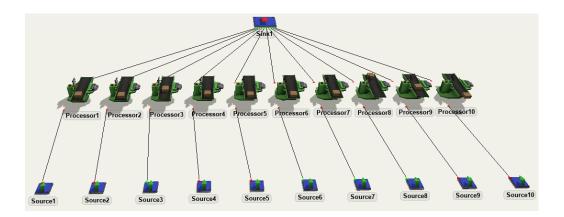


Fig. 1. Simulation model for the discussed problem (source: own study)

The objective function is defined as the cost of work of processors reflecting the work of individual plants. The cost is determined by the working time and efficiency of individual production systems. In order to calculate the cost of work for all processors in FlexSim, add the *Financial Analysis* chart to the *Dashboard* and specify the cost for all *Processors*. This parameter must be defined by adding it from the Toolbox library as a *Performance Measure* variable. Assign this objective function as *Financial Analysis* - *Total* for the previously defined *Financial Analysis* chart (Fig. 2).

The objective function in this task is minimized as the enterprise is interested in lowering the cost. In addition, the total time of task completion is also minimized. The system time from model operation is not listed as a ready-made function in the drop-down list. It is necessary to use the custom code in the optimizer tab for the *Performance Measures* variable. Enter the function in the code editing window [29]:

```
/**Custom Code*/
treenode datanode = parnode(1);
return time();
```

				▼ ×
2	X	1		🛛 🕄
Value		Display Units	Description	
	0			
	0			
Reference	/Too	s/Statistics/Fina	ancial Analysis	1
Value	- 2			
	Value	Value 0 Reference //Tool	Value Display Units 0 0 Reference /Tools/Statistics/Fin	Value Display Units Description 0 0 • Reference /Tools/Statistics/Financial Analysis

Fig. 2. Definition of the objective function - the output variable for the total costs and duration of the process (source: own study)

Parameters 1	0 🗧 🗙 👔	J C
Name	Value	Display Units Description
x1	:	2000 💌
x2	Trees	-
x3	Туре	Integer ~
x4	Lower Bound	0 🗸
x5	Upper Bound	10000 🗸
х6		
x7	Reference	/Source1>variables/sequence/Arrival1/Quar
x8	On Set	Set Node Value 😭 🤌 🛒
x9		
x10		0

Fig. 3. Definition of input variables of the objective function (source: own study)

bbbs Run Advanced Optimization1 Biggerment1 Stop Time 0.00 08:00:00 (a) 23.02.2023 (b) Experiment2 Stop Time 560000.00 (a) 23.02.2023 (c) (c) Experiment3 Stop Time 560000.00 (a) 23.02.2023 (c) (c) Experiment3 Stop Time 560000.00 (a) 23.02.2023 (c) (c) Experiment3 Stop Time 560000.00 (a) (c) (c) (c) Experiment3 Stop Time 560000.00 (c) (c) (c) (c) (c) Experiment3 Stop Time 50000.00 (c) (c) </th <th>tesults Database File E: \art</th> <th>ykuly\2023\CZOTO</th> <th>2022\tre</th> <th>e solite</th> <th></th> <th></th> <th>Jse Default Path</th> <th>Delete Results File</th> <th>View Results</th> <th></th>	tesults Database File E: \art	ykuly\2023\CZOTO	2022\tre	e solite			Jse Default Path	Delete Results File	View Results	
Name Optimization1 Experiment3 Stop Time 500000.00 (a) (2.01.2023 Specify the name of this job Experiment3 Stop Time 500000.00 (b) (2.01.2023 (c)		ykary (2023 (C2010)	_2022 (0 0	eraquite				Delete Results File	view Results	
Experiment3 Warmup Time 0.00 08:00:00 (e) (2.01.2022) Specify the name of this job Experiment3 Stop Time 3600000.00 00:00:00 (e) (2.01.2022) (e) Feedmatchee Experiment3 Stop Time 3600000.00 (e) (2.01.2022) (e) (e) (e) Experiment3 Bit OParameters Initial scenarios (potonal) 1 (e)	Harrin Harrancea									
Offentiation 1 Intel True Intel Sectors Intel Sectors Intel Sectors Dependent 2 Stor Time Social Sectors Intel Sectors Intel Sectors Dependent 2 Dependent 2 Intel Sectors Intel Sectors Intel Sectors Dependent 2 Dependent 2 Intel Sectors Intel Sectors Intel Sectors Dependent 2 Dependent 2 Intel Sectors Intel Sectors Intel Sectors Sectors 1 10000 0 0 0 Settings Constraint 1 Intel Sectors Intel Sectors Wall Time (seconds) 100 Constraint 2 Intel Sectors Replication Mode Real number of reglications Constraint 2 Intel Sectors 1 Constraint 3 X=0 or X2>1000 Constraint 3 X=0 or X2>1000 Constraint 5 X=0 or X2>1000 Constraint 5 Intel Sectors 1 Objective 1 / Time Mean	🖶 🔻 🖬 🗙 🏌 🌲	Name		Optimization 1						
Experiment3 Expe		Warmup Time		0.00	08:00:00	\$ 12.01.	2023 Specify the	name of this job		
Experiment3 Exper	Experiment5	Stop Time	Stop Time		3600000.00 00:00:00		23.02.2023			
Experiment3 Bit Perameters x1 x2 x3 x4 x5 Sectors 1 10000 0	Experiment8	Parameters		Initial scenarios (optional)			1 🗘 🗙	1 J Set mod	el to selected sce	nario
Sectings Constraints 0			ters		×1	x	2 x3	x4	x5	
Settings Constraints Equation Wal Time (seconds) 1000 Constraint 1 1x+x2+x3+x4+x5+x6+x7+x8+x9+x10=10000 Max Iterations 100 Constraint 1 1x+x2+x3+x4+x5+x6+x7+x8+x9+x10=10000 Replication Mode Faced number of replications Constraint 2 xi=200 Replications 5 Constraint 3 x2=0 or x2>1000 Constraint 4 x3=0 or x2>1000 Constraint 4 x4=0 or x4>1000 Objectives Constraint 4 x4=0 or x4>1000 Eventor Objective 1 V Time Minimize Mean	experimento			Scenario	1	10000	0	0	0	
Wall Time (seconds) 1000 Ebuation Max Iterations 100 Constraint 1 x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=10000 Replication Mode Fixed number of replications Constraint 2 x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=10000 Replication Mode Fixed number of replications Constraint 3 x2=0 or x2>1000 Constraint 5 x4=0 or x4>1000 Constraint 5 x4=0 or x4>1000 Objectives Direction Agregation Question Objective 1 ✓ Time Minimize Mean				<						>
Wall Time (seconds) 1000 Ebuation Max Iterations 100 Constraint 1 x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=10000 Replication Mode Fixed number of replications Constraint 2 x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=10000 Replication Mode Fixed number of replications Constraint 3 x2=0 or x2>1000 Constraint 5 x4=0 or x4>1000 Constraint 5 x4=0 or x4>1000 Objectives Direction Agregation Question Objective 1 ✓ Time Minimize Mean		Settings	Cottings						6	×
Max Iterations 100 Constraint 1 x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=10000 Replications Fixed number of replications Constraint 3 x1=2000 Replications S Constraint 3 x2=0 or x2>1000 Constraint 4 x3=000 Constraint 4 x3=000 Objectives Constraint 5 x4=0 or x4>1000 Constraint 4 Objective 1 ✓ Time Mean										
Institute solids Isso Constraint 2 x1=2000 Replication Mode Replications Constraint 2 x1=2000 Replication Mode Replications Constraint 3 x2=0 or x2>1000 Constraint 4 x3=0 or x3>1000 Constraint 4 x3=0 or x3>1000 Objective a Objective Orestonin 5 x4=0 or x4>1000 Objective 1 ✓ Time] Minimize Man			(idd)	100				1×4+×5+×6+×7+×8+×9+×10=10000		
Replication Mode Fixed number of replications Constraint 3 x2=0 or x2>1000 Repeatable search Constraint 5 x4=0 or x3>1000 Constraint 5 x4=0 or x4>1000 Objective s Constraint 5 x4=0 or x4>1000 Constraint 5 x4=0 or x4>1000 Objective s Constraint 5 Venture function Orection Aggregation Objective 1 ✓ Time Minimize Mean							x1=2000 x2=0 or x2>1000			
Replications 5 Constraint 4 x3=0 or x3>1000 Chepestable search Constraint 5 x4=0 or x3>1000 Image: Constraint 5 x4=0 or x3>1000 Objectives Constraint 5 x4=0 or x4>1000 Image: Constraint 5 x4=0 or x4>1000 Objective 1 ✓ [Time] Minimize Mean		Replication Mod	e							
☑ Repeatable search Constraint 5 x4=0 or x4>1000 Objective a Active Function Aggregation Objective 1 ✓ (Tme) Minimize Mean				Replications 5	dications 5					
Objectives Direction Aggregation Objective 1 ✓ (Time) Minimize Mean		Repeatable	search							
Active Function Direction Aggregation Objective 1 ✓ (Time) Minimize Mean						Constraint 5	x4=0 or x4>1000			
Objective 1 V [Time] Minimize Mean		Objectives		15 r		10° 1°		1	-	~ ^
[Objective 2 / [cost] Minimize Mean										
cojecte z v jeotij manaze mean		Objective 2	 Image: A start of the start of	[cost]		Minimize	Mean			

Fig. 4. FlexSim optimizer settings (source: own study)

The optimizer needs 10 input parameters, which are the number of flow elements generated by each processor. This is the variable that will be used in the optimization process, as well as the place where the optimizer will generate results from subsequent iterations. This parameter must be defined by adding it from the *Toolbox* library. Then, in the *Value* column, select *Integer* as the type of input variables. The length of the sequence should be set according to the number of products according to the order, i.e. $0\div10000$ (Fig. 3).

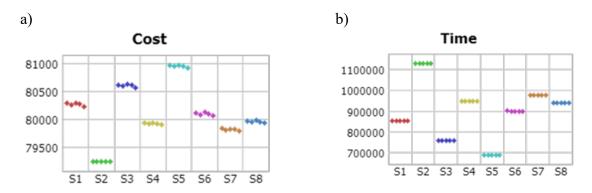
Boundary conditions and constraints related to the size of the production batch and the production capacity of individual plants should also be specified. Optimizer settings are shown in Figure 4.

The objective function in this task is minimized because the company is interested in reducing the cost. In addition, the total task completion time is also minimized. The optimizer will adjust the values of the flow elements for each *Source* until it finds the optimal value at which the production time and costs are the lowest.

Results Analysis

As a result of the optimizer's work, the best combination of allocation of production orders to individual plants was obtained, while minimizing costs and order execution time. The result of the optimizer's work for 100 iterations, along with the amount of costs and the duration of the production cycle, is shown in Fig. 5.




Fig. 5. The result of the optimizer work (source: own study)

Materials Research Proceedings 34 (2023) 334-343

Solution	1	2	3	4	5	6	7	8
x1 [pcs]	2000	2000	2000	2000	2000	2000	2000	2000
x2 [pcs]	0	0	0	0	0	0	0	0
x3 [pcs]	0	0	0	0	0	0	0	0
x4 [pcs]	0	0	0	0	0	0	0	0
x5 [pcs]	0	0	0	0	0	0	0	0
x6 [pcs]	0	0	0	0	0	0	0	0
x7 [pcs]	1961	0	2632	1290	3303	1626	1084	1355
x8 [pcs]	0	0	0	0	0	0	0	0
x9 [pcs]	6039	8000	5368	6710	4697	6374	6916	6645
x10 [pcs]	0	0	0	0	0	0	0	0
Time [s]	852906	1129796	758123	947636	687329	900198	976728	938460
Cost [monetary units]	80259	79235	80602	79918	80945	80090	79810	79952

As the best sequence for addressing production orders, the optimizer proposed 8 solutions. In all solutions except 2, all production takes place in 3 plants. The detailed allocation of production orders along with the costs and lead time of a production order are presented in Table 2. Production time depends on many factors, including on the materials used, tools, machines, operator skills, etc. In the quoted calculations, the process time was described by the Uniform distribution function, which will randomly select any numbers from the specified range in accordance with Table 1. The uniform distribution strategy will include numbers with decimal places. Therefore, for the obtained optimal solution, five repetitions (replications) were made and confidence intervals of production costs (Fig. 6a) and execution times (Fig. 6b) were obtained for a single order batch consisting of 10,000 items of products. Graphical interpretation in the form of graphs is shown in Fig. 6.

The presented results were determined as a 95% confidence interval for the studied phenomenon. In practice, this means that there is a 95% probability that the unknown parameter of the population (in this case, the cost and production time will be in the designated numerical range.

Fig. 6. Confidence intervals for: a) production costs [monetary units], b) execution times [seconds] (source: own study)

Summary

The presented example shows how a discrete event simulation model can improve the planning of the production process. As can be seen in the presented example, looking for savings in the areas

of process engineering allows for a real reduction in production costs, which a large part of companies is not aware of. This factor is of particular importance in the production process supported by external entities, as well as in the logistics sector, where transport, distribution and storage generate high costs. It should also be noted that in addition to costs, production time is also important. It is an indicator of the timely execution of the task, which is particularly important in the case of production in the so-called suction system, i.e. production to order. Such analysis is particularly important in situations where resources and people involved in a given process or operation are shared. Most importantly, however, the simulation shows the impact of plans and schedules on actual performance, and guides managers to choose optimal actions.

References

[1] D. Klimecka-Tatar et al. Sustainable Developement in Logistic – A Strategy for Management in Terms of Green Transport. Manag. Sys. Prod. Eng. 29 (2021) 91-96. https://doi.org/10.2478/mspe-2021-0012

[2] J. Karcz, B. Ślusarczyk. Criteria of quality requirements deciding on choice of the logistic operator from a perspective of his customer and the end recipient of goods, Prod. Eng. Arch. 27 (2021) 58-68. https://doi.org/10.30657/pea.2021.27.8

[3] M. Ingaldi et al. Analysis of problems during implementation of Lean Manufacturing elements, MATEC Web Conf. 183 (2018) art.01004. https://doi.org/10.1051/matecconf/201818301004

[4] R. Ulewicz, R. Kucęba. Identification of problems of implementation of Lean concept in the SME sector, Eng. Manag. Prod. Serv. 8 (2016) 19-25. https://doi.org/10.1515/emj-2016-0002

[5] D. Klimecka-Tatar. Context of production engineering in management model of Value Stream Flow according to manufacturing industry, Prod. Eng. Arch. 21 (2018) 32-35. https://doi.org/10.30657/pea.2018.21.07

[6] K. Knop. Indicating and analysis the interrelation between terms – visual: management, control, inspection and testing, Prod. Eng. Arch. 26 (2020) 110-120. https://doi.org/10.30657/pea.2020.26.22

[7] E. Staniszewska et al. Eco-design processes in the automotive industry, Prod. Eng. Arch. 26 (2020) 131-137. https://doi.org/10.30657/pea.2020.26.25

[8] R. Ulewicz et al. Implementation of Logic Flow in Planning and Production Control, Manag. Prod. Eng. Rev. 7 (2016) 89-94. https://doi.org/10.1515/mper-2016-0010

[9] M. Mazur, H. Momeni. LEAN Production issues in the organization of the company – results, Prod. Eng. Arch. 22(2019) 50-53. https://doi.org/10.30657/pea.2019.22.10

[10] M. Niciejewska et al. Impact of Technical, Organizational and Human Factors on Accident Rate of Small-Sized Enterprises, Manag. Sys. Prod. Eng. 29 (2021) 139-144. https://doi.org/10.2478/mspe-2021-0018

 [11] M. Krynke et al. Cost Optimization and Risk Minimization During Teamwork
 Organization, Manag. Sys. Prod. Eng. 29 (2021) 145-150. https://doi.org/10.2478/mspe-2021-0019

[12] K. Knop. Evaluation of quality of services provided by transport & logistics operator from pharmaceutical industry for improvement purposes, Trans. Res. Procedia 40 (2019) 1080-1087. https://doi.org/10.1016/j.trpro.2019.07.151 [13] M. Ingaldi. A new approach to quality management: conceptual matrix of service attributes, Pol. J. Manag. Stud. 22 (2020) 187-200. https://doi.org/10.17512/pjms.2020.22.2.13

[14] N. Baryshnikova et al. Management approach on food export expansion in the conditions of limited internal demand, Pol. J. Manag. Stud. 21, 2 (2020) 101-114. https://doi.org/10.17512/pjms.2020.21.2.08

[15] K. Knop. Importance of visual management in metal and automotive branch and its influence in building a competitive advantage, Pol. J. Manag. Stud. 22 (2020) 263-278. https://doi.org/10.17512/pjms.2020.22.1.17

[16] R. Ulewicz, M. Blaskova, Sustainable development and knowledge management from the stakeholders' point of view, Pol. J. Manag. Stud. 18 (2018) 363-374. https://doi.org/10.17512/pjms.2018.18.2.29

[17] D. Klimecka-Tatar, M. Ingaldi. Assessment of the Technological Position of a Selected Enterprise in the Metallurgical Industry, Mater. Res. Proc. 17 (2020) 72-78. https://doi.org/10.21741/9781644901038-11

[18] R. Ulewicz. Practical Application of Quality Tools in the Cast Iron Foundry, Manuf. Technol. 14 (2014) 104-111. https://doi.org/10.21062/ujep/x.2014/a/1213-2489/MT/14/1/104

[19] J.M. Garrido. Introduction to Flexsim. In: Object Oriented Simulation: A Modeling and Programming Perspective, J.M. Garrido (Ed.), 31-42, Springer US, 2009. https://doi.org/10.1007/978-1-4419-0516-1

[20] J. Kyncl. Digital Factory Simulation Tools, Manuf. Technol. 16 (2016) 371-375. https://doi.org/10.21062/ujep/x.2016/a/1213-2489/MT/16/2/371

[21] E. Sujová et al. Simulation Models of Production Plants as a Tool for Implementation of the Digital Twin Concept into Production, Manuf. Technol. 20 (2020) 527-533. https://doi.org/10.21062/mft.2020.064

[22] C. Zhuang et al. Digital twin-based smart production management and control framework for the complex product assembly shop-floor, J. Adv. Manuf. Technol. 96 (2018) 1149-1163. https://doi.org/10.1007/s00170-018-1617-6

[23] M. Krynke. Risk Management in the Process of Personnel Allocation to Jobs, System Safety: Human - Technical Facility - Environment 2 (2020) 82-90. https://doi.org/10.2478/czoto-2020-0011

[24] M. Krynke, K. Mielczarek. Applications of linear programming to optimize the costbenefit criterion in production processes, MATEC Web Conf. 183 (2018) art.04004. https://doi.org/10.1051/matecconf/201818304004

[25] I. Kaczmar. The use of simulation and optimization in managing the manufacturing process – case study, Gospodarka Materiałowa i Logistyka 2016 (4) (2016) 21-28.

[26] [26] S. Borkowski et al. The use of 3x3 matrix to evaluation of ribbed wire manufacturing technology, METAL $2012 - 21^{st}$ Int. Conf. Metall. Mater. (2012), Ostrava, Tanger 1722-1728.

[27] K. Czerwinska et al. Improving quality control of siluminial castings used in the automotive industry, METAL 2020 – 29th Int. Conf. Metall. Mater. (2020) 1382-1387. https://doi.org/10.37904/metal.2020.3661

[28] A. Pacana et al. Analysis of quality control efficiency in the automotive industry, Transp. Res. Procedia 55 (2021) 691-698. https://doi.org/10.1016/j.trpro.2021.07.037

[29] M. Zenkiewicz et al. Electrostatic separation of binary mixtures of some biodegradable polymers and poly(vinyl chloride) or poly(ethylene terephthalate), Polimery/Polymers 61 (2016) 835-843. https://doi.org/10.14314/polimery.2016.835

[30] D. Siwiec et al. Improving the process of achieving required microstructure and mechanical properties of 38mnvs6 steel, METAL 2020 29th Int. Conf. Metall. Mater. (2020) 591-596. https://doi.org/10.37904/metal.2020.3525

[31] P. Jonšta et al. The effect of rare earth metals alloying on the internal quality of industrially produced heavy steel forgings, Materials 14 (2021) art.5160. https://doi.org/10.3390/ma14185160

[32] T. Lipinski et al. Influence of oxygen content in medium carbon steel on bending fatigue strength, Eng. Rural Develop. 21 (2022) 351-356. https://doi.org/10.22616/ERDev.2022.21.TF116

[33] N. Radek et al. The influence of plasma cutting parameters on the geometric structure of cut surfaces, Mater. Res. Proc. 17 (2020) 132-137. https://doi.org/10.21741/9781644901038-20

[34] N. Radek et al. Microstructure and tribological properties of DLC coatings, Mater. Res. Proc. 17 (2020) 171-176. https://doi.org/10.21741/9781644901038-26

[35] N. Radek et al. Influence of laser texturing on tribological properties of DLC coatings, Prod. Eng. Arch. 27 (2021) 119-123. https://doi.org/10.30657/pea.2021.27.15

[36] N. Radek et al. Operational properties of DLC coatings and their potential application, METAL 2022 – 31st Int. Conf. Metall. Mater. (2022) 531-536. https://doi.org/10.37904/metal.2022.4491

[37] G. Barucca et al. The potential of Λ and Ξ - studies with PANDA at FAIR, Europ. Phys. J. A 57 (2021) art.154 https://doi.org/10.1140/epja/s10050-021-00386-y

[38] M. Domagala et al. The Influence of Oil Contamination on Flow Control Valve Operation, Mater. Res. Proc. 24 (2022) 1-8. https://doi.org/10.21741/9781644902059-1

[39] N. Radek et al. The impact of laser welding parameters on the mechanical properties of the weld, AIP Conf. Proc. 2017 (2018) art.20025. https://doi.org/10.1063/1.5056288

[40] N. Radek et al. Properties of Steel Welded with CO2 Laser, Lecture Notes in Mechanical Engineering (2020) 571-580. https://doi.org/10.1007/978-3-030-33146-7_65

[41] R. Ulewicz, M. Mazur. Economic aspects of robotization of production processes by example of a car semi-trailers manufacturer, Manufacturing Technology 19 (2019) 1054-1059. https://doi.org/10.21062/ujep/408.2019/a/1213-2489/MT/19/6/1054

[42] N. Radek, R. Dwornicka. Fire properties of intumescent coating systems for the rolling stock, Commun. – Sci. Lett. Univ. Zilina 22 (2020) 90-96. https://doi.org/10.26552/com.C.2020.4.90-96

[43] S. Marković et al. Exploitation characteristics of teeth flanks of gears regenerated by three hard-facing procedures, Materials 14 (20210 art. 4203. https://doi.org/10.3390/ma14154203

[44] J. Pietraszek, E. Skrzypczak-Pietraszek. The uncertainty and robustness of the principal component analysis as a tool for the dimensionality reduction. Solid State Phenom. 235 (2015) 1-8. https://doi.org/10.4028/www.scientific.net/SSP.235.1

[45] R. Dwornicka, J. Pietraszek. The outline of the expert system for the design of experiment, Prod. Eng. Arch. 20 (2018) 43-48. https://doi.org/10.30657/pea.2018.20.09

[46] J. Pietraszek et al. Challenges for the DOE methodology related to the introduction of Industry 4.0. Prod. Eng. Arch. 26 (2020) 190-194. https://doi.org/10.30657/pea.2020.26.33

[47] B. Jasiewicz et al. Inter-observer and intra-observer reliability in the radiographic measurements of paediatric forefoot alignment, Foot Ankle Surg. 27 (2021) 371-376. https://doi.org/10.1016/j.fas.2020.04.015

[48] J. Pietraszek. The modified sequential-binary approach for fuzzy operations on correlated assessments, LNAI 7894 (2013) 353-364. https://doi.org/10.1007/978-3-642-38658-9_32

[49] J. Pietraszek et al. Non-parametric assessment of the uncertainty in the analysis of the airfoil blade traces, METAL $2017 - 26^{\text{th}}$ Int. Conf. Metall. Mater. (2017) 1412-1418. ISBN 978-8087294796

[50] J. Pietraszek et al. The non-parametric approach to the quantification of the uncertainty in the design of experiments modelling, UNCECOMP 2017 Proc. 2nd Int. Conf. Uncert. Quant. Comput. Sci. Eng. (2017) 598-604. https://doi.org/10.7712/120217.5395.17225

[51] M. Matuszny. Building decision trees based on production knowledge as support in decision-making process, Prod. Eng. Arch. 26 (2020) 36-40. https://doi.org/10.30657/pea.2020.26.08

[52] M. Beaverstock et al. Applied Simulation: Modeling and Analysis Using FlexSim. BookBaby, Pennsauken Township, 2018. ISBN 978-0983231974

 [53] M. Drbúl et al. Simulation Possibilities of 3D Measuring in Progressive Control of Production, Manufacturing Technology 16 (2016) 53-58.
 https://doi.org/10.21062/ujep/x.2016/a/1213-2489/MT/16/1/53

[54] I. Kaczmar. Komputerowe modelowanie i symulacje procesów logistycznych w środowisku Flexsim. PWN, Warszawa, 2019. ISBN 978-8301205447

[55] S. Setamanit. Evaluation of outsourcing transportation contract using simulation and design of experiment, Pol. J. Manag. Stud. 18 (2018) 300-310. https://doi.org/10.17512/pjms.2018.18.2.24

[56] M. Krynke et al. Analysis of the Problem of Staff Allocation to Work Stations, QPI 2021 Qual. Prod. Improv. (2019) 545-550. https://doi.org/10.2478/cqpi-2019-0073

[57] T.D.C. Le et al. Optimal vehicle route schedules in picking up and delivering cargo containers considering time windows in logistics distribution networks: A case study, Prod. Eng. Arch. 26 (2020) 174-184. https://doi.org/10.30657/pea.2020.26.31

[58] J. Kyncl et al. Tricanter Production Process Optimization by Digital Factory Simulation Tools, Manuf. Technol. 17 (2017) 49-53. https://doi.org/10.21062/ujep/x.2017/a/1213-2489/MT/17/1/49

[59] FlexSim: User manual (2017).