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Abstract. A novel approach for free vibration analysis of train body structures is introduced by 
using the Carrera Unified Formulation (CUF) and Dynamic Stiffness Method (DSM). Higher-
order kinematic fields are developed using the Carrera Unified Formulation, which allows for 
straightforward implementation of any-order theory without the need for ad hoc formulations, in 
the case of beam theories. In particular, the parallel axis theorem is introduced on the basis of the 
Taylor expansion cross-sectional displacement variables, which unifies the different shape 
subsections of the train into the same coordinate system. The Principle of Virtual Displacements 
is used to derive the governing differential equations and the associated natural boundary 
conditions. An exact dynamic stiffness matrix is then developed by relating the amplitudes of 
harmonically varying loads to those of the responses. Finally, the Wittrick–Williams (WW) 
algorithm was used to carry out the free vibration analysis of the train body and the natural 
frequencies and corresponding modal shapes are presented.  
Introduction 
Train body frame is an important part of the train as a load-carrying system. The operating 
environment of high-speed trains is complex, with the increase of speed, the vibration of train body 
becomes more and more obvious, which has a great impact on the stability, comfort and safety of 
train operation. As the first step in the optimal design of train body structures, free vibration 
analysis is an important part of the analysis of train dynamic characteristics. At present, high-speed 
trains adopt the concept of modular design, and analyze the structure of different parts of the frame 
separately. The dynamic analysis of the train body frame is still in its infancy [1], so it is necessary 
to establish an efficient and accurate modeling method and analysis method for the body frame. 

As a typical frame structure in engineering, the shape of the train body structure is extremely 
complex. In order to be able to calculate, certain assumptions and simplifications are often adopted 
[2]. Among many approximate analysis methods, the finite element method (FEM) is undoubtedly 
the most extensive and effective numerical calculation method. The finite element (FE) modeling 
method of the train body can choose refined modeling and equivalent modeling. Refined modeling 
is to appropriately simplify the train body structure under the premise of retaining the main shape, 
and reduce the number of units and calculation time of the model while reflecting the actual 
structural characteristics of the train body as much as possible. Sung-Cheol Yoon [3], H.Kurtaran 
[4], Wang Wei [5] and others studied the refined modeling of train body structure respectively, 
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and on the basis of the model, the analysis and calculation of strength and mode were carried out. 
The equivalent modeling is to perform equivalent processing on the structure of the train body. 
There is a certain difference between the shape and the actual model. The mechanical parameters 
are derived and calculated according to the actual structural materials. The equivalent model has 
advantages in terms of the number of units compared to the refined modelling. D.Ribeiro[1] and 
others established the equivalent single-layer plate model of the BBN train body in the Alpha train. 
Shen Zhenhong [6] used different methods to establish the train sandwich plate structure. The 
finite element model of different modeling methods is compared with the deviation of the 
calculation results of the solid element method, and the feasibility of the lamination theory 
modeling method is verified. However, the FEM essentially obtains approximate solutions by 
dividing units. The above two methods still require a certain number of units to meet the accuracy 
requirements for complex frame structures, and their high calculation costs are hard to accept for 
the optimal design of train body structures.  

The present work is intended to provide a more powerful approach for the free vibration analysis 
of train body as a beam structure through the application of the Carrera Unified Formulation (CUF) 
and dynamic stiffness method (DSM) in a much broader context by allowing for the cross-sectional 
deformation. CUF is a hierarchical formulation that considers the order of ofthe model, N, as a 
free-parameter (i.e. as an input) of the analysis or in other words, refined models are obtained 
without having the need for any ad hoc formulation [7-9]. On this basis of the Taylor expansion 
(TE), we introduce the parallel axis theorem (PAT) for train body structure, which broadens the 
applicable field of TE. On the other hand, the DSM is appealing in dynamic analysis because 
unlike the FEM, it provides exact solution of the equations of motion of a structure once the initial 
assumptions on the displacements field have been made. This essentially means that, unlike the 
FEM and other approximate methods, the model accuracy is not unduly compromised when a 
small number of elements are used in the analysis.  

In this work, 1D higher-order Dynamic Stiffness (DS) elements based on CUF are extended 
and applied to the free vibration analysis of train body. In the next section, CUF and PAT is 
introduced and higher-order models are formulated. The principle of virtual displacements is then 
used to derive the equations of motion and the natural boundary conditions, which are subsequently 
expressed in the frequency domain by assuming a harmonic solution. After the resulting system of 
ordinary differential equations of second order with constant coefficients is solved, the frequency 
dependent DS matrix of the system is derived. Finally, the algorithm of Wittrick and Williams is 
applied to extrapolate the free vibration characteristics of train body. 
1D unified formulation 
Preliminaries 
Within the framework of the CUF, the displacement field 𝒖𝒖(𝑥𝑥,𝑦𝑦, 𝑧𝑧; 𝑡𝑡) can be expressed as 

𝒖𝒖(𝑥𝑥,𝑦𝑦, 𝑧𝑧; 𝑡𝑡) = 𝐹𝐹𝜏𝜏(𝑥𝑥, 𝑧𝑧)𝒖𝒖𝜏𝜏(𝑦𝑦; 𝑡𝑡),    𝜏𝜏 = 1,2, … ,𝑀𝑀.                                                                       (1) 

where 𝐹𝐹𝜏𝜏 are the functions of the coordinates x and z on the cross-section. 𝒖𝒖𝜏𝜏 is the vector of the 
generalized displacements, M stands for the number of the terms used in the expansion, and the 
repeated subscript, 𝜏𝜏, indicates summation. The choice of 𝐹𝐹𝜏𝜏 determines the class of the 1D CUF 
model that is required and subsequently to be adopted. According to Eq. 1, TE (Taylor expansion) 
1D CUF models consist of a MacLaurin series that uses the 2D polynomials xi zj as 𝐹𝐹𝜏𝜏 functions, 
where i and j are positive integers. For instance, the displacement field of the second-order (N = 
2) TE model can be expressed as 
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𝑢𝑢𝑥𝑥 = 𝑢𝑢𝑥𝑥1 + 𝑥𝑥𝑢𝑢𝑥𝑥2 + 𝑧𝑧𝑢𝑢𝑥𝑥3 + 𝑥𝑥2𝑢𝑢𝑥𝑥4 + 𝑥𝑥𝑥𝑥𝑢𝑢𝑥𝑥5 + 𝑧𝑧2𝑢𝑢𝑥𝑥6 ,
𝑢𝑢𝑦𝑦 = 𝑢𝑢𝑦𝑦1 + 𝑥𝑥𝑢𝑢𝑦𝑦2 + 𝑧𝑧𝑢𝑢𝑦𝑦3 + 𝑥𝑥2𝑢𝑢𝑦𝑦4 + 𝑥𝑥𝑥𝑥𝑢𝑢𝑦𝑦5 + 𝑧𝑧2𝑢𝑢𝑦𝑦6 ,
𝑢𝑢𝑧𝑧 = 𝑢𝑢𝑧𝑧1 + 𝑥𝑥𝑢𝑢𝑧𝑧2 + 𝑧𝑧𝑢𝑢𝑧𝑧3 + 𝑥𝑥2𝑢𝑢𝑧𝑧4 + 𝑥𝑥𝑥𝑥𝑢𝑢𝑧𝑧5 + 𝑧𝑧2𝑢𝑢𝑧𝑧6 .

                                                                (2) 

The order N of the expansion is set as an input option of the analysis; the integer N is arbitrary 
and it defines the order the beam theory. 
 
Governing equations of the N-order TE model and parallel axis theorem 
The principle of virtual displacements is used to derive the equations of motion. 

𝛿𝛿𝐿𝐿int = ∫  𝑉𝑉 𝛿𝛿𝝐𝝐
𝑇𝑇𝝈𝝈d𝑉𝑉 = −𝛿𝛿𝐿𝐿ine .                                                                                                         (3) 

where 𝝈𝝈 is stress, 𝝐𝝐 is strain, 𝐿𝐿int stands for the strain energy and 𝐿𝐿ine is the work done by the inertial 
ladings. 𝛿𝛿 stands for the usual virtual variation operator. After integrations by part, Eq. 3 becomes  

𝛿𝛿𝐿𝐿int = ∫  𝐿𝐿 𝛿𝛿𝐮𝐮𝜏𝜏
𝑇𝑇𝐊𝐊𝜏𝜏𝜏𝜏𝐮𝐮𝑠𝑠d𝑦𝑦 + [𝛿𝛿𝐮𝐮𝜏𝜏𝑇𝑇𝚷𝚷𝜏𝜏𝜏𝜏𝐮𝐮𝑠𝑠]𝑦𝑦=0

𝑦𝑦=𝐿𝐿 .                                                                                  (4) 

where 𝐊𝐊𝜏𝜏𝜏𝜏 is the differential linear stiffness matrix and 𝚷𝚷𝜏𝜏𝜏𝜏 is the matrix of the natural boundary 
conditions in the form of 3×3 fundamental nuclei. Due to space reasons, the 𝐊𝐊𝜏𝜏𝜏𝜏 matrix and 
𝚷𝚷𝜏𝜏𝜏𝜏 matrix are not expanded in detail which can be referred to [9]. However, the critical part of 
these matrices is the solution of the cross-sectional moment parameter 𝐸𝐸𝜏𝜏,𝜃𝜃𝜃𝜃,𝜁𝜁

𝛼𝛼𝛼𝛼 . 

𝐸𝐸𝜏𝜏,𝜃𝜃𝜃𝜃,𝜁𝜁
𝛼𝛼𝛼𝛼 = ∫  Ω 𝐶̃𝐶𝛼𝛼𝛼𝛼𝐹𝐹𝜏𝜏,𝜃𝜃𝐹𝐹𝑆𝑆,𝜁𝜁dΩ.                                                                                                               (5) 

where 𝐶̃𝐶𝛼𝛼𝛼𝛼 is the coefficient matrix related to the Young modulus, the Poisson ratio, and fiber 
orientation angle. For the integration of cross-section functions, in general, the Taylor expansion 
is only applicable to the whole cross-section. However, as shown in the Fig.1, the cross-section of 
the train body contains both the Cartesian coordinate system and the polar coordinate system, 
which need to be integrated separately. Therefore, we introduce the concept of the parallel axis 
theorem and the specific steps are as follows 

 
Fig.1 Cross-section of the train body 

For the Taylor expanded body section integral, when the midpoint of the integral is (x0, z0), it 
can be expressed as 

∫ 𝐹𝐹𝜏𝜏𝐹𝐹𝑆𝑆𝑑𝑑𝑑𝑑 = ∑ ∑ ∫𝑥𝑥𝑚𝑚𝑧𝑧𝑛𝑛𝑁𝑁
𝑐𝑐=0 𝑥𝑥𝑐𝑐𝑧𝑧𝑑𝑑𝑑𝑑𝑑𝑑.𝑁𝑁

𝑚𝑚=0                                                                                               (6) 

where n=N-m, d=N-c. Coordinates (x0, z0) have the following relationship with (x1, z1): 
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𝑥𝑥1 − 𝑥𝑥0 = 𝑎𝑎, 𝑧𝑧1 − 𝑧𝑧0 = 𝑏𝑏.                                                                                                                            (7) 

Thus, to represent the circular area in the polar coordinates, each term of the summation in Eq. 
6 can be rewritten as 

∫  Ω (𝑥𝑥 + 𝑎𝑎)𝑚𝑚(𝑧𝑧 + 𝑏𝑏)𝑛𝑛(𝑥𝑥 + 𝑎𝑎)𝑐𝑐(𝑧𝑧 + 𝑏𝑏)𝑑𝑑𝑑𝑑Ω

= ∫ ∑  𝑀𝑀
𝑖𝑖=0 𝐶𝐶𝑚𝑚𝑖𝑖 𝑥𝑥𝑖𝑖𝑎𝑎𝑚𝑚−𝑖𝑖 ∑  𝑛𝑛

𝑗𝑗=0 𝐶𝐶𝑛𝑛
𝑗𝑗𝑧𝑧𝑗𝑗𝑏𝑏𝑛𝑛−𝑗𝑗 ∑  𝑡𝑡

𝑝𝑝=0 𝐶𝐶𝑐𝑐
𝑝𝑝𝑥𝑥𝑝𝑝𝑎𝑎𝑐𝑐−𝑝𝑝 ∑  𝑑𝑑

𝑞𝑞=0 𝐶𝐶𝑑𝑑
𝑞𝑞𝑧𝑧𝑞𝑞𝑏𝑏𝑑𝑑−𝑞𝑞𝑑𝑑Ω

= ∑  𝑚𝑚
𝑖𝑖=0 ∑  𝑛𝑛

𝑗𝑗=0 ∑  𝑐𝑐
𝑝𝑝=0 ∑  𝑑𝑑

𝑞𝑞=0 𝐶𝐶𝑚𝑚𝑖𝑖 𝐶𝐶𝑛𝑛
𝑗𝑗𝐶𝐶𝑐𝑐

𝑝𝑝𝐶𝐶𝑑𝑑
𝑞𝑞𝑎𝑎𝑚𝑚−𝑖𝑖𝑏𝑏𝑛𝑛−𝑗𝑗𝑎𝑎𝑐𝑐−𝑝𝑝𝑏𝑏𝑑𝑑−𝑞𝑞∫ 𝑥𝑥𝑖𝑖𝑧𝑧𝑗𝑗𝑥𝑥𝑝𝑝𝑧𝑧𝑞𝑞𝑑𝑑Ω.

                               

(8) 

where C is the binomial coefficient and the integral part in Eq. 8 can be further converted to 
solve in polar coordinates 

∫ 𝑥𝑥𝑖𝑖𝑧𝑧𝑗𝑗𝑥𝑥𝑝𝑝𝑧𝑧𝑞𝑞𝑑𝑑Ω = ∫ 𝑟𝑟𝑖𝑖+𝑗𝑗+𝑝𝑝+𝑞𝑞cos𝑖𝑖+𝑝𝑝 𝜃𝜃sin𝑗𝑗+𝑞𝑞 𝜃𝜃𝜃𝜃Ω
= ∫  𝑟𝑟0𝑟𝑟1 ∫  𝜃𝜃2

𝜃𝜃1
𝑟𝑟𝑖𝑖+𝑗𝑗+𝑝𝑝+𝑞𝑞 cos𝑖𝑖+𝑝𝑝 𝜃𝜃 sin𝑗𝑗+𝑞𝑞 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 .

                                                                      

(9) 

where r0 is the radius of the outer side of the ring. Based on the above method, the cross-sectional 
moment parameter 𝐸𝐸𝜏𝜏,𝜃𝜃𝜃𝜃,𝜁𝜁

𝛼𝛼𝛼𝛼  of the train body section can be derived.  
Then, the virtual variation of the inertial work is given by 

𝛿𝛿𝐿𝐿ine = ∫  𝐿𝐿 𝛿𝛿𝐮𝐮𝜏𝜏 ∫  Ω 𝜌𝜌𝐹𝐹𝜏𝜏𝐹𝐹𝑆𝑆dΩ𝐮̈𝐮𝑠𝑠d𝑦𝑦 = ∫  𝐿𝐿 𝛿𝛿𝐮𝐮𝜏𝜏𝐌𝐌
𝜏𝜏𝜏𝜏𝐮̈𝐮𝑠𝑠d𝑦𝑦.                                                                 (10) 

where 𝐌𝐌𝜏𝜏𝜏𝜏 is the differential linear mass matrix. And the explicit form of the governing equations 
is 

 

𝛿𝛿𝑢𝑢𝑥𝑥𝑥𝑥:−𝐸𝐸𝜏𝜏𝜏𝜏66𝑢𝑢𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 + �𝐸𝐸𝜏𝜏,𝑥𝑥𝑥𝑥
26 − 𝐸𝐸𝜏𝜏𝑠𝑠,𝑥𝑥

26 �𝑢𝑢𝑥𝑥𝑥𝑥,𝑦𝑦 + �𝐸𝐸𝜏𝜏,𝑥𝑥𝑠𝑠,𝑥𝑥
22 + 𝐸𝐸𝜏𝜏,𝑧𝑧𝑠𝑠,𝑧𝑧

44 �𝑢𝑢𝑥𝑥𝑥𝑥
           −𝐸𝐸𝜏𝜏𝜏𝜏36𝑢𝑢𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 + �𝐸𝐸𝜏𝜏,𝑥𝑥

23 − 𝐸𝐸𝜏𝜏𝑠𝑠,𝑥𝑥
66 �𝑢𝑢𝑦𝑦𝑦𝑦,𝑦𝑦 + �𝐸𝐸𝜏𝜏,𝑥𝑥𝑠𝑠,𝑥𝑥

26 + 𝐸𝐸𝜏𝜏,𝑧𝑧𝑠𝑠,𝑧𝑧
45 �𝑢𝑢𝑦𝑦𝑦𝑦

           +�𝐸𝐸𝜏𝜏𝑧𝑧,𝑧𝑧𝑠𝑠
45 − 𝐸𝐸𝜏𝜏𝑠𝑠,𝑧𝑧

16 �𝑢𝑢𝑧𝑧𝑧𝑧,𝑦𝑦 + �𝐸𝐸𝜏𝜏,𝑧𝑧𝑠𝑠,𝑥𝑥
44 + 𝐸𝐸𝜏𝜏,𝑥𝑥𝑠𝑠,𝑧𝑧

12 �𝑢𝑢𝑧𝑧𝑧𝑧 = −𝐸𝐸𝜏𝜏𝜏𝜏
𝜌𝜌 𝑢̈𝑢𝑥𝑥𝑥𝑥,

𝛿𝛿𝑢𝑢𝑦𝑦𝑦𝑦:−𝐸𝐸𝜏𝜏𝜏𝜏36𝑢𝑢𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 + �𝐸𝐸𝜏𝜏,𝑥𝑥𝑥𝑥
66 − 𝐸𝐸𝜏𝜏𝜏𝜏,𝑥𝑥

23 �𝑢𝑢𝑥𝑥𝑥𝑥,𝑦𝑦 + �𝐸𝐸𝜏𝜏,𝑥𝑥
26𝑠𝑠,𝑥𝑥 + 𝐸𝐸𝜏𝜏,𝑧𝑧

45𝑠𝑠,𝑧𝑧�𝑢𝑢𝑥𝑥𝑥𝑥
           −𝐸𝐸𝜏𝜏𝜏𝜏33𝑢𝑢𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 + �𝐸𝐸𝜏𝜏,𝑥𝑥

36 − 𝐸𝐸𝜏𝜏𝑠𝑠,𝑥𝑥
36 �𝑢𝑢𝑦𝑦𝑦𝑦,𝑦𝑦 + �𝐸𝐸𝜏𝜏,𝑥𝑥𝑠𝑠,𝑥𝑥

66 + 𝐸𝐸𝜏𝜏,𝑧𝑧𝑠𝑠,𝑧𝑧
55 �𝑢𝑢𝑦𝑦𝑦𝑦

          +�𝐸𝐸𝜏𝜏,𝑧𝑧
55 − 𝐸𝐸𝜏𝜏𝜏𝜏,𝑧𝑧

13 �𝑢𝑢𝑧𝑧𝑧𝑧,𝑦𝑦 + �𝐸𝐸𝜏𝜏,𝑥𝑥𝑥𝑥,𝑧𝑧
16 + 𝐸𝐸𝜏𝜏,𝑧𝑧

45� = 𝑢𝑢𝑧𝑧𝑧𝑧 = −𝐸𝐸𝜏𝜏𝜏𝜏
𝜌𝜌 𝑢̈𝑢𝑦𝑦𝑦𝑦,

𝛿𝛿𝑢𝑢𝑧𝑧𝑧𝑧: �𝐸𝐸𝜏𝜏,𝑧𝑧
16 − 𝐸𝐸𝜏𝜏𝑠𝑠,𝑧𝑧

45 �𝑢𝑢𝑥𝑥𝑥𝑥,𝑦𝑦 + �𝐸𝐸𝜏𝜏,𝑥𝑥𝑥𝑥,𝑧𝑧
44 + 𝐸𝐸𝜏𝜏,𝑧𝑧

12𝑠𝑠,𝑥𝑥�𝑢𝑢𝑥𝑥𝑥𝑥
         +�𝐸𝐸𝜏𝜏,𝑧𝑧

13 − 𝐸𝐸𝜏𝜏𝑠𝑠,𝑧𝑧
55 �𝑢𝑢𝑦𝑦𝑦𝑦,𝑦𝑦 + �𝐸𝐸𝜏𝜏,𝑥𝑥𝑠𝑠,𝑧𝑧

45 + 𝐸𝐸𝜏𝜏,𝑧𝑧
16𝑠𝑠,𝑥𝑥�𝑢𝑢𝑦𝑦𝑦𝑦 − 𝐸𝐸𝜏𝜏𝜏𝜏55𝑢𝑢𝑧𝑧𝑧𝑧,𝑦𝑦𝑦𝑦

         +�𝐸𝐸𝜏𝜏,𝑥𝑥𝑥𝑥
45 − 𝐸𝐸𝜏𝜏𝜏𝜏,𝑥𝑥

45 �𝑢𝑢𝑧𝑧𝑧𝑧,𝑦𝑦 + �𝐸𝐸𝜏𝜏,𝑥𝑥𝑠𝑠,𝑥𝑥
44 + 𝐸𝐸𝜏𝜏,𝑧𝑧𝑠𝑠,𝑧𝑧

11 �𝑢𝑢𝑧𝑧𝑧𝑧 = −𝐸𝐸𝜏𝜏𝜏𝜏
𝜌𝜌 𝑢̈𝑢𝑧𝑧𝑧𝑧.

                                         (11) 

where  

𝐸𝐸𝜏𝜏𝜏𝜏
𝜌𝜌 = ∫  Ω 𝜌𝜌𝐹𝐹𝜏𝜏𝐹𝐹𝑆𝑆dΩ.                                                                                                                  (12) 

Double over dots stand for the second derivative with respect to time (t). Letting 𝐏𝐏𝜏𝜏 =
�𝑃𝑃𝑥𝑥𝑥𝑥  𝑃𝑃𝑦𝑦𝑦𝑦  𝑃𝑃𝑧𝑧𝑧𝑧�

𝑇𝑇
 to be the vector of the generalized forces, the natural boundary conditions are 
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𝛿𝛿𝑢𝑢𝑥𝑥𝑥𝑥:𝑃𝑃𝑥𝑥𝑥𝑥 = 𝐸𝐸𝜏𝜏𝜏𝜏66𝑢𝑢𝑥𝑥𝑥𝑥,𝑦𝑦 + 𝐸𝐸𝜏𝜏𝜏𝜏,𝑥𝑥
26 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝐸𝐸𝜏𝜏𝜏𝜏36𝑢𝑢𝑦𝑦𝑦𝑦,𝑦𝑦 + 𝐸𝐸𝜏𝜏𝜏𝜏,𝑥𝑥

66 𝑢𝑢𝑦𝑦𝑦𝑦 + 𝐸𝐸𝜏𝜏𝜏𝜏,𝑧𝑧
16 𝑢𝑢𝑧𝑧𝑧𝑧,

𝛿𝛿𝑢𝑢𝑦𝑦𝑦𝑦:𝑃𝑃𝑦𝑦𝑦𝑦 = 𝐸𝐸𝜏𝜏𝜏𝜏36𝑢𝑢𝑥𝑥𝑥𝑥,𝑦𝑦 + 𝐸𝐸𝜏𝜏𝜏𝜏,𝑥𝑥
23 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝐸𝐸𝜏𝜏𝜏𝜏33𝑢𝑢𝑦𝑦𝑦𝑦,𝑦𝑦 + 𝐸𝐸𝜏𝜏𝜏𝜏,𝑥𝑥

36 𝑢𝑢𝑦𝑦𝑦𝑦 + 𝐸𝐸𝜏𝜏𝜏𝜏,𝑧𝑧
13 𝑢𝑢𝑧𝑧𝑧𝑧,

𝛿𝛿𝑢𝑢𝑧𝑧𝑧𝑧:𝑃𝑃𝑧𝑧𝑧𝑧 = 𝐸𝐸𝜏𝜏𝜏𝜏,𝑧𝑧
45 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝐸𝐸𝜏𝜏𝜏𝜏,𝑧𝑧

55 𝑢𝑢𝑦𝑦𝑦𝑦 + 𝐸𝐸𝜏𝜏𝜏𝜏55𝑢𝑢𝑧𝑧𝑧𝑧,𝑦𝑦 + 𝐸𝐸𝜏𝜏𝜏𝜏,𝑥𝑥
45 𝑢𝑢𝑧𝑧𝑧𝑧.

                                       (13) 

For a fixed approximation order N, Eq. 11 and 13 have to be expanded using the indices τ and 
s in order to obtain the governing differential equations and the natural boundary conditions of the 
desired model.  

In the case of harmonic motion, the solution of Eq. 11 is sought in the form 

𝐮𝐮𝑠𝑠(𝑦𝑦; 𝑡𝑡) = 𝐔𝐔𝑠𝑠(𝑦𝑦)𝑒𝑒i𝜔𝜔𝜔𝜔.                                                                                                                   (14) 

where 𝐔𝐔𝑠𝑠(𝑦𝑦) is the amplitude function of the motion, ω is an arbitrary circular or angular 
frequency, and i is √−1. The formulation of the equilibrium equations and the natural boundary 
conditions in the frequency domain can be obtained by substituting Eq. 14 into Eq. 11. 
Dynamic stiffness formulation 
In Section 2, the ordinary differential equations of the beam in free vibration have been derived 
and the procedure to obtain the Dynamic Stiffness (DS) matrix for a structural problem can be 
summarized as follows: (i) Seek a closed form analytical solution of the governing differential 
equations of the structural element; (ii) Apply a number of general boundary conditions equal to 
twice the number of integration constants in algebraic form, which are usually the nodal 
displacements and forces; (iii) Eliminate the integration constants by relating the amplitudes of the 
generalized nodal forces to the corresponding generalized displacements generating the DS matrix 
𝓚𝓚. For the sake of brevity, the expressions for the DS matrix 𝓚𝓚 are not reported here, but can be 
found in standard texts, see for example Pagani [9]. It should be noted that the DS matrix consists 
of both the inertia and stiffness properties of the structure element unlike the FEM for which they 
are separately identified. 

The DS matrix 𝓚𝓚 is the basic building block to compute the exact natural frequencies of a 
higher-order beam. The DSM has also many of the general features of the FEM. In particular, it is 
possible to assemble elemental DS matrices to form the overall DS matrix of any complex structure 
consisting of beam elements.  The global DS matrix can be written as 

𝑷̄𝑷𝐺𝐺 = 𝒦𝒦𝐺𝐺𝑼̄𝑼𝐺𝐺 .                                                                                                                             (15) 

where 𝒦𝒦𝐺𝐺  is the square global DS matrix of the final structure. For the sake of simplicity, the 
subscript “G” is omitted hereafter. The train body structure can be regarded as beams of different 
cross-sectional forms, and the whole train body structure can be obtained by simply assembling it 
like FEM. The boundary conditions can be applied by using the well-known penalty method (often 
used in FEM) or by simply removing rows and columns of the stiffness matrix corresponding to 
the degrees of freedom which are zeroes. Due to the presence of higher-order degrees of freedom 
at each interface, a multitude of boundary conditions can be applied at the required nodes. 

The Wittrick–Williams algorithm is used to solve the transcendental (nonlinear) eigenvalue 
problem generated by the DSM. Once the natural frequencies are calculated and the associated 
global DS matrix is obtained, the complete displacement field can be generated as a function of x, 
y, z and the time t. Clearly, the plot of the required mode and required element can be visualized 
on a fictitious 3D mesh. By following this procedure it is possible to compute the exact mode 
shapes using just one element which is impossible in FEM. 
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Numerical Results 
A train body with four types cross-sections such as the one shown in Fig. 2 is considered. The four 
types represent the cross-section of the body frame, window, door and end wall respectively. The 
material data are the Young modulus, 𝐸𝐸 = 75GPa, the Poisson ratio, 𝜈𝜈 = 0.33, material density, 
𝜌𝜌 = 2700kgm−3. The cross-sectional data are L1=1.6m, L2=1.65m, L3=1m, L4=2m, W1=3.3m, 
H1=2.55m, H2=0.425m, H3=1.275m, H4=0.4m, H5=0.2m, H6=1.7m, H7=2m, H8=0.8m, H9=1.04m, 
R1=0.85m,  R2=0.75m,  t=0.02m. Distribution of cross-section types in the y-direction (lengthwise) 
is shown in Fig. 3. The bodies of 4 types cross-sections are combined into a complete train structure 
which the length is 18m.  

 
(a) Cross section of body frame (Type 1)           (b) Cross section of body frame with windows (Type 2) 

 
(c) Cross section of body frame with doors (Type 3)   (d) Cross section of body frame with end wall (Type 4) 

Fig. 2 Cross section of four typical train body frames 
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Fig.3 Distribution of cross-section types in the y-direction (lengthwise) 

Table 1 shows the first 6 natural frequencies of the train body for free-free BCs. Classical 
Timoshenko beam method (TBM) as well as up to the fifth-order TE refined train body models by 
the present DSM approach are given in Table 2.  

Table 1 First to sixth natural frequencies (Hz) for the FF train body. 

 Mode 1a Mode 2b Mode 3c Mode 4d Mode 5e Mode 6f 
N=5 50.3449 59.7189 82.2272 109.2521 127.8564 145.3032 
N=4 50.9998 60.0692 82.4901 111.4041 129.5863 145.3141 
N=3 51.2261 60.1823 86.9639 113.2928 130.6047 145.3141 
N=2 53.2889 61.870 87.8691 126.1918 140.4748 145.3489 
N=1 53.2628 61.8535 89.5141 104.9372 126.0787 140.4051 
TBM - 61.8535 - - 125.0255 140.4051 

a First flexural mode on plane yz. b First flexural mode on plane xy. c First torsional mode. 
d Second flexural mode on plane yz.  e Second flexural mode on plane xy. f Second torsional mode. 

Fig.4 shows the first six modes of the train body for free-free BCs. The Mode 1 is first 

flexural mode on plane yz, the Mode 2 is first flexural mode on plane xy, the Mode 3 is first 
torsional mode, the Mode 4 is second flexural mode on plane yz, the Mode 5 is second flexural 
mode on plane xy and the Mode 6 is second torsional mode. Moreover, it has been demonstrated 
that CUF TE higher-order models can deal with non-classical phenomena such as torsion, shear 
effects and couplings. Train body elasticity solutions can, in fact, be reproduced with CUF models 
if a sufficient number of terms are considered in the kinematic field of the beam theory. 

 
Fig.4 First flexural on plane yz (a), first flexural on plane xy (b), first torsional mode (c), second 
flexural on plane yz (d), second flexural mode on plane xy (e), second torsional mode (f) for the 

FF train body, N=4. 
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Conclusions  
In the framework of CUF, the introduction of the parallel axis theorem in the Taylor expansion 
greatly improves its applicability: 1) geometrical boundary conditions can be applied in 
subdomains of the cross-section (and not only to the whole cross-section).  2) cross-sections can 
be divided into further beam sections and easily assembled. Combined with DSM, a high-order 
DS matrix is developed and the natural frequencies and mode shapes of the train body structure 
are calculated using the WW algorithm. Through further validation, the method can provide a 
powerful tool for the dynamic analysis and optimised design of laminated composite train body. 
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