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Abstract. The utilization of a fracture energy regularization technique, based on the crack band 
model, can effectively resolve the issue of mesh-size dependency in the finite element modelling 
of quasi-brittle structures. However, achieving accurate results requires proper estimation of the 
characteristic element length in the finite element method. This study presents practical calculation 
methods for the characteristic element length, particularly for higher-order finite elements based 
on the Carrera Unified Formulation (CUF). Additionally, a modified Mazars damage model that 
incorporates fracture energy regularization is employed for damage analysis in quasi-brittle 
materials. An experimental benchmark is adopted then for validation, and the result shows that the 
proposed methods ensure accurate regularization of fracture energy and provide mesh-independent 
structural behaviors. 
Introduction 
Higher-order beam finite element method based on Carrera unified formulation (CUF) [1] allows 
for one-dimensional analysis along the beam direction, with three-dimensional results obtained by 
expanding the cross-section using different polynomials such as Taylor [2] and Lagrange [3, 4]. 
The Lagrange expansion is a popular choice for many engineering analyses due to its ability to fit 
well with arbitrary cross-sections. However, when considering the strain-softening behavior of 
quasi-brittle materials, where stress decreases as strain increases, achieving mesh objectivity in the 
numerical results poses a significant challenge in finite element analyses. 

The objectivity of numerical results in the framework of continuum mechanics can be restored 
by various regularization methods, such as integral-type or gradient-type nonlocal models [5, 6], 
viscous or rate-dependent methods [7], and the crack band approach [8] (or fracture energy 
regularization method). Among them, the crack band approach is a popular analytical tool due to 
its simplicity and efficiency. It can give mesh-independent finite element (FE) results by 
regularizing the softening curves of Gaussian points according to the crack bandwidth during 
calculation. Therefore, the key parameter in this method is the crack bandwidth (or characteristic 
element length). 

The crack bandwidth is influenced by many characteristics of finite elements such as the shape, 
the order, the dimension, the interpolation function and scheme, and so on [9]. Over the past 
decades, several estimations for crack bandwidth have been proposed and can be categorized into 
three groups: (1) methods based on the square root of the element area or cubic root of the element 
volume [10]; (2) projection methods or methods proposed by Govindjee [11]; and (3) methods 
proposed based on Oliver [12]. However, all the above methods are applicable to two-dimensional 
or linear elements, which is not suitable for higher-order finite elements. Some researchers have 
made many modifications based on the previous three methods such as adding influencing factors 
to consider the element order [13, 14], which will also inspire this work. In this work, two methods 
will be proposed and discussed by comparing results from a numerical benchmark.  
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Finite elements based on CUF 
This work is based on the higher-order beam theories within the framework of CUF, as described 
in [1]. To maintain brevity and simplicity, only the essential framework is presented here. The 1D 
unified formulation can be expressed as follows: 

𝒖𝒖(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐹𝐹𝜏𝜏(𝑥𝑥, 𝑧𝑧)𝒖𝒖𝜏𝜏(𝑦𝑦),     𝜏𝜏 = 1,2, … … ,𝑀𝑀                                                                         (1) 

where 𝑦𝑦 is set as the axial direction; (𝑥𝑥, 𝑧𝑧) creates the cross-section plane; 𝐹𝐹𝜏𝜏(𝑥𝑥, 𝑧𝑧) varies within 
the cross-section; 𝒖𝒖𝜏𝜏(𝑦𝑦) is the generalized displacement vector; 𝜏𝜏 represents the summation; 𝑀𝑀 
stands for the number of terms in the expansion.  

In this work, Lagrange-like polynomials are adopted as cross-section expanding functions 𝐹𝐹𝜏𝜏, 
which is known as the Lagrange expansion (LE). The quadrilateral element with different orders 
such as four-node bilinear (L4), nine-node quadratic (L9) and sixteen-node cubic (L16) is mainly 
utilized. As an illustration, the interpolation function for L4 is shown as an example: 

𝐹𝐹𝜏𝜏 = 1
4

(1 + 𝑟𝑟𝑟𝑟𝜏𝜏)(1 + 𝑠𝑠𝑠𝑠𝜏𝜏), 𝜏𝜏 = 1,2,3,4                                                                                     (2) 

where (𝑟𝑟, 𝑠𝑠) are natural coordinates that vary from -1 to 1 and 𝑟𝑟𝜏𝜏 and 𝑠𝑠𝜏𝜏 are the actual coordinates. 
The classical beam shape functions can be adopted to approximate the generalized displacement 
field 𝒖𝒖𝜏𝜏 and Eq. 1 can be rewritten as: 

𝒖𝒖(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐹𝐹𝜏𝜏(𝑥𝑥, 𝑧𝑧)𝑁𝑁𝑖𝑖(𝑦𝑦)𝒖𝒖𝜏𝜏𝑖𝑖,     𝑖𝑖 = 1,2, … … ,𝑁𝑁𝑁𝑁𝑁𝑁                                                                  (3) 

where 𝑁𝑁𝑖𝑖 is the shape functions of classical beam elements including two nodes (B2), three nodes 
(B3), and four nodes (B4) for choice; 𝑁𝑁𝑁𝑁𝑁𝑁 is the number of nodes per element; 𝒖𝒖𝜏𝜏𝑖𝑖 is the nodal 
displacement vector. 
Modified Mazars damage model 
Mazars [15] proposed a simple isotropic damage model considering a scalar damage variable 
which can be written as: 

𝛔𝛔 = (1 − 𝑑𝑑)𝐄𝐄𝟎𝟎𝛆𝛆                                                                                                                         (4) 

where 𝛔𝛔 and 𝛆𝛆 represent stress and strain, respectively; 𝐄𝐄𝟎𝟎 is the stiffness matrix of undamaged 
material; 𝑑𝑑 is the damage variable. 
More details on modified Mazars damage models can be found in [16]. For explaining fracture 
energy regularization, the tensile damage evolution law is presented here: 

𝑑𝑑𝑡𝑡 = �
1 − 𝜀𝜀𝑑𝑑0

𝜅𝜅𝑡𝑡
exp � 𝜀𝜀𝑑𝑑0−𝜅𝜅𝑡𝑡

𝜀𝜀𝑡𝑡𝑡𝑡−𝜀𝜀𝑑𝑑0
�    if   𝜅𝜅𝑡𝑡 ≤ 𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

1 − 𝑝𝑝𝑡𝑡×𝜀𝜀𝑑𝑑0
𝜅𝜅𝑡𝑡

                       if   𝜅𝜅𝑡𝑡 > 𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
                                                                              (5) 

where 𝜀𝜀𝑑𝑑0 is the maximum strain of elastic period; 𝜅𝜅𝑡𝑡 is a internal variable for loading function 
which is the equivalent strain in Mazars damage model; 𝑝𝑝𝑡𝑡 is defined as the ratio between the 
residual tensile stress and uniaxial tensile strength which ensures the damage is infinitely close to 
1.0 but not equals 1.0; 𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the residual strain corresponding to the residual stress; 𝜀𝜀𝑡𝑡𝑡𝑡 is the 
equivalent ultimate strain for bilinear softening, which is relevant to the constitutive law. 



Aerospace Science and Engineering - III Aerospace PhD-Days Materials Research Forum LLC 
Materials Research Proceedings 33 (2023) 226-232  https://doi.org/10.21741/9781644902677-33 
 

 
228 

The fracture energy regularization technique is employed for controlling the slope of the 
softening diagram which is related to 𝜀𝜀𝑡𝑡𝑡𝑡. It can be realized by the following equation: 

𝐺𝐺𝑓𝑓
𝑙𝑙𝑐𝑐

= 𝑓𝑓𝑐𝑐𝑡𝑡𝑐𝑐(𝜀𝜀𝑡𝑡𝑡𝑡 − 𝜀𝜀𝑑𝑑0)                                                                                                                               (6) 

where 𝐺𝐺𝑓𝑓 is the fracture energy of the material; 𝑓𝑓𝑐𝑐𝑡𝑡𝑐𝑐 is the tensile strength; 𝑙𝑙𝑐𝑐 is the crack bandwidth 
or characteristic element length. 
Crack bandwidths estimation  
The first method developed for higher-order finite elements was proposed in [10], which is based 
on the cubic root of the element volume. The volume consists of one beam element and one 
Lagrange element, as shown in Fig. 1 for further clarification. The element volume is the product 
of beam element length 𝑙𝑙𝑡𝑡 and Lagrange element area  𝐴𝐴𝑡𝑡, and can be divided into smaller elements 
based on the order of the beam and Lagrange elements. In Fig. 1, the element volume is divided 
into eight smaller elements, and the crack bandwidth can be estimated by taking the cubic root of 
the smaller volume. Therefore, the crack bandwidth can be estimated using the following equation: 

𝑙𝑙𝑝𝑝1 = �
𝑙𝑙𝑒𝑒×𝐴𝐴𝑒𝑒

�√𝑀𝑀−1�
2

×(𝑁𝑁𝑁𝑁𝑁𝑁−1)
3                                                                                                             (7) 

However, this method requires that the smaller volume shown in Fig. 1 should be cubical. 
Therefore, the following equation should be approximately satisfied: 

�𝐴𝐴𝑒𝑒
𝑙𝑙𝑒𝑒

≈ √𝑀𝑀−1
𝑁𝑁𝑁𝑁𝑁𝑁−1

                                                                                                                                                 (8) 

The other method is inspired by [9, 13] which reported that strain localization with softening 
only occurs on some Gaussian points within a single higher-order element, rather than all of them. 
This phenomenon is attributed to the influence of the element order. The method estimates the 
crack bandwidths as follows: 

𝑙𝑙𝑝𝑝2 = 𝑙𝑙𝑔𝑔 × 𝛼𝛼                                                                                                                              (9) 

where 𝑙𝑙𝑔𝑔 is the estimated length from [11] and 𝛼𝛼 can be considered as a correction factor for the 
strain localization. 

For a clear explanation, Fig. 2 illustrates the calculation process after assembling a cube element 
and conducting a 3D Govindjee's projection. Then the Gaussian points are divided into three 
layers, as L9 is adopted, with 9 Gaussian points in each layer due to the use of B3. In the first layer, 

 

Figure 1. Description of method 1 
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two-thirds of the Gaussian points undergo softening, suggesting a value of 𝛼𝛼 as 13/18. In the 
second layer, all Gaussian points undergo softening, so 𝛼𝛼 is 1.0. In the third layer, all Gaussian 
points are still in elastic linear period and no damage is detected. It is worth noting that the 
suggested value of 𝛼𝛼 is from [9, 13], which is actually from the weight ratio of softening Gaussian 
points to all Gaussian points on one element. But in this CUF based higher-order beam elements, 
𝛼𝛼 is suggested as the weight ratio of softening Gaussian points to all Gaussian points on one 
specific layer, illustrating 𝛼𝛼 is not always the same for all Gaussian points in this higher-order 
beam theory.  

 

Figure 2. Description of method 2 

Numerical examples 
The present study utilizes the Hassanzadeh test [17], which is a benchmark direct tension test for 
quasi-brittle materials, to compare and validate proposed methods. Fig. 3 shows the dimension of 
a cube sample with four edges notched in the middle. The bottom is fixed and a tension is imposed 
on the top via displacement control. The material is concrete, with an elastic modulus of 36 GPa, 
a tensile strength of 3.5 MPa, and a Poisson's ratio of 0.2. 
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(a) (b) (c) 
Figure 3. Information of test sample (unit: mm): (a) Front view, (b) Top view, and (c) 

Assignment of beam elements 
Figure. 3(c) illustrates the assignment of beam elements, which are used in the present study. 

Various numbers and orders of beam elements are considered, as shown in Table 1. The 
configuration of Lagrange elements for all models will be consistent, using L9 elements with the 
same size. 

Table 1: Model information 

Model No. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Beam Configuration 1B2+4B2 2B2+4B2 1B3+4B3 2B3+4B3 1B4+2B4 2B4+2B4 

Total DoFs 6498 6681 11193 11919 9390 10479 

 
All load-displacement curves of different models obtained from different methods are plotted 

in Fig. 4. When two beam elements are adopted in the middle notch, Method 1 fails to provide 
results due to non-convergence. Additionally, when B4 elements are adopted, the peak load and 
softening part of the curve are both lower than other models, suggesting that Method 1 is unable 
to regularise the fracture energy because Eq. 8 is not satisfied. From Fig. 4(b), Method 2 provides 
great results that all models producing similar curves except for Model 6 which has a slightly lower 
curve. This indicates Method 2 provides a reliable estimation of crack bandwidths, successfully 
preserving the fracture energy. 

The damage distribution of all models obtained using different methods are shown in Fig. 5. 
For models with Method 1, the damage distributions that limited to the notched part are reasonable. 
However, when B3 or B4 elements are adopted for Method 2, some issues arise, resulting in the 
fracture area extending beyond the middle notched part. Nevertheless, the damage intensity is not 
too significant. 
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Figure 4: Load-displacement curves from: (a) Method 1 and (b) Method 2 
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Figure 5: Damage distribution of different models from different methods 

Conclusions 
This work shows the damage analysis of quasi-brittle materials using CUF-based higher-order 
finite elements. A modified Mazars damage model with fracture energy regularization is utilized. 
Two methods are proposed for estimating the crack bandwidths or characteristic element length, 
which is a crucial parameter for fracture energy regularization in higher-order beam elements. 
While Method 2 yielded the best performance in the previous analysis, both methods provide 
objective structural behaviors that are mesh independent and can help preserve fracture energy to 
some extent. 
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