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Abstract. The research program deals with fluid-structure interaction (FSI), a challenging field of 
engineering, with a practical application on aerospace problems such as the flutter, an instability 
problem due to aeroelastic excitations. The research goal is to find a suitable way to deal with 
flutter in such a way the two macro fields, fluid and structure, are modelled with mid to high-level 
accuracy. Moreover, the creation of an interface could be useful to study other problems, such as 
the cabin comfort for an aircraft. To do that, the research activity is firstly split in two to study in 
depth the structural and the fluid problem, then they are merged together through the interface 
analysis: the main problem is that each field has an own scale and the union of both requests a 
suitable modelling and analysis. After a preliminary study on the state of the art of fluid-structure 
interaction in literature, which forms the pillar of the research project, the structural field is 
analysed first. The study of the structure system is carried out on the Carrera Unified Formulation 
(CUF), which allows a reduced degrees of freedom model with the same accuracy of the classical 
Finite Element Method (FEM). Analysis on possible adaptive mesh methods is needed in order to 
match the proper scale at interface with fluid dynamics system. This work could be a milestone 
for future investigation in problems that need a mesh refinement, beyond the aeroelastic field. 
Then, the fluid system is studied and analysed through the Navier-Stokes equations. In particular, 
a Dual Time Stepping model for non-stationary Favre Average Navier-Stokes is used. More in 
general, considering different order of magnitude for the Reynold’s number, three different 
analysis could be done: Reynolds Average Navier-Stokes (RANS) for only large-scale eddies 
resolved and other components modelled, Large Eddy Simulation (LES) which adds the resolution 
of the flux of energy with respect to the previous simulation and Direct Numerical Simulation 
(DNS) which resolves also the dissipating eddies, so representing the best performing simulation 
but with very high computational cost. Finally, a complete simulation of fluid-structure interaction 
is performed to find the flutter velocity and study the induced vibrations from turbulent boundary 
layer to the aircraft cabin and/or to the rocket nose.  
State of the art 
The state of the art for an accurate fluid-structure interaction model is the following: considering 
commercial codes and analysing the literature, there is a large number of models where the fluid 
part is accurate and studied in depth and the structural part is dealt in a simpler manner, or there 
is a considerable number of models in which the situation is reversed, so the structural part is 
deepened and the fluid part is approximated with less accuracy. The problem is not simple to 
deal with, because different scales are involved and combining them is a challenging process, as 
ell indicated in Fig. 1. 
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Fig. 1 – Fluid vs. Structural modelling. Credits: CCTech® 

In particular, several cases are present in the literature, distinguishing between the models used: 
linear and non-linear. Among the former, we mention the Classical Aerodynamic Theory (CAT), 
the Classical Hydrodynamic Stability Theory (CHST) [1], the Parallel Shear Flow with Dynamic 
Inviscid Perturbation (PSF with DIP) [2] and the Time-Linearized General Analysis (TLGA). 
Regarding non-linear models, the Harmonic Equilibrium Method (HEM) [3] and the System 
Identification Method (SIM) [4,5] are mentioned. These are added to the classic methods of 
studying the modes of vibration of the structure in the presence of external forces that simulate the 
effect of aerodynamic forces. What emerges from this first research is that there is a trend to widely 
use Reduced Order Models (ROMs) [6] to create a compromise between the number of degrees of 
freedom required by the fluid-structure interaction model and the available computational 
resources. 
Methods of analysis 
To develop an accurate FSI model, the idea is to use the Carrera Unified Formulation for the 
structural part and the Dual Time Stepping (DTS) model for non-stationary Favre Average Navier-
Stokes for the fluid part. 
Structural modelling - CUF 
The choice on the CUF for the structural part is driven by several advantages: in fact, this 
formulation allows to describe the kinematic filed in unified manner, it allows to derive the 
governing equations in compact way and it gives accurate results with a low number of Degrees 
Of Freedom (DOFs). Let us consider a generic beam structure whose longitudinal axis, with 
respect to a Cartesian coordinate system, lays on the coordinate y, being its cross-section defined 
in the xz-plane. The displacement field of one-dimensional models in CUF framework is described 
as a generic expansion of the generalized displacements (in the case of displacement-based 
theories) by arbitrary functions of the cross-section coordinates: 

𝐮𝐮(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =  𝐹𝐹𝝉𝝉(𝑥𝑥, 𝑧𝑧)𝐮𝐮𝜏𝜏(𝑦𝑦)          𝜏𝜏 = 1, … ,𝑀𝑀  (1) 

where 𝑢𝑢 =  {𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦,𝑢𝑢𝑧𝑧} is the vector of 3D displacements and 𝑢𝑢𝜏𝜏  =  {𝑢𝑢𝑥𝑥𝜏𝜏,𝑢𝑢𝑦𝑦𝜏𝜏,𝑢𝑢𝑧𝑧𝜏𝜏} is the vector 
of general displacements, M is the number of terms in the expansion, τ denotes summation and the 
functions 𝐹𝐹𝝉𝝉(𝑥𝑥, 𝑧𝑧) define the 1D model to be used. In the framework of plate theories, by 
considering the mid-plane of the plate laying in the xy-plane, CUF can be formulated in an 
analogous manner: 

𝐮𝐮(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =  𝐹𝐹𝝉𝝉(𝑧𝑧)𝐮𝐮𝜏𝜏(𝑥𝑥, 𝑦𝑦)          𝜏𝜏 = 1, … ,𝑀𝑀  (2) 

In the equation above, the generalized displacements are function of the mid-plane coordinates 
of the plate and the expansion is conducted in the thickness direction z. The main advantage of 
CUF is that it allows to write the governing equations and the related finite element arrays in a 
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compact and unified manner, which is formally an invariant with respect to the 𝐹𝐹𝝉𝝉 functions [7,8]. 
Let the 3D displacement vector be defined as: 

𝐮𝐮(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =  �
𝑢𝑢𝒙𝒙(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)
𝑢𝑢𝒚𝒚(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑢𝑢𝒛𝒛(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)

.  (3) 

According to classical elasticity, stress and strain tensors can be organized in six-term vectors 
with no lack of generality. They read, respectively: 

𝝈𝝈𝑇𝑇 =  �𝜎𝜎𝑦𝑦𝑦𝑦  𝜎𝜎𝑥𝑥𝑥𝑥   𝜎𝜎𝑧𝑧𝑧𝑧  𝜎𝜎𝑥𝑥𝑧𝑧  𝜎𝜎𝑦𝑦𝑧𝑧  𝜎𝜎𝑥𝑥𝑦𝑦�  (4) 

𝜺𝜺𝑇𝑇 =  �𝜀𝜀𝑦𝑦𝑦𝑦  𝜀𝜀𝑥𝑥𝑥𝑥  𝜀𝜀𝑧𝑧𝑧𝑧  𝛾𝛾𝑥𝑥𝑧𝑧  𝛾𝛾𝑦𝑦𝑧𝑧  𝛾𝛾𝑥𝑥𝑦𝑦�  (5) 

Regarding to this expression, the geometrical relations between strains and displacements with 
the compact vectorial notation can be defined as: 

𝜺𝜺 =  𝑫𝑫𝑫𝑫  (6) 

where, in the case of small deformations and angles of rotations, D is the following linear 
differential operator: 

𝐷𝐷 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 𝜕𝜕

𝜕𝜕𝑦𝑦
0

𝜕𝜕
𝜕𝜕𝑥𝑥

0 0

0 0 𝜕𝜕
𝜕𝜕𝑧𝑧

𝜕𝜕
𝜕𝜕𝑧𝑧

0 𝜕𝜕
𝜕𝜕𝑥𝑥

0 𝜕𝜕
𝜕𝜕𝑧𝑧

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑥𝑥

0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (7) 

On the other hand, or isotropic materials the relation between stresses and strains is obtained 
through the well-known Hooke’s law: 

𝝈𝝈 =  𝑪𝑪𝜺𝜺  (8) 

where C is the isotropic stiffness matrix: 

𝐶𝐶 =  

⎣
⎢
⎢
⎢
⎢
⎡
𝐶𝐶22 𝐶𝐶21 𝐶𝐶23 0 0 0
𝐶𝐶21 𝐶𝐶11 𝐶𝐶13 0 0 0
𝐶𝐶23 𝐶𝐶13 𝐶𝐶33 0 0 0
0 0 0 𝐶𝐶55 0 0
0 0 0 0 𝐶𝐶44 0
0 0 0 0 0 𝐶𝐶66⎦

⎥
⎥
⎥
⎥
⎤

  (9) 

The coefficients of the stiffness matrix depend only on the Young’s modulus, E, and the Poisson 
ratio, ν, and they are: 
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𝐶𝐶11 =  𝐶𝐶22 =  𝐶𝐶33 =  (1−𝜈𝜈)𝐸𝐸
(1+𝜈𝜈)(1−2𝜈𝜈)

𝐶𝐶21 =  𝐶𝐶13 =  𝐶𝐶23 =  𝜈𝜈𝐸𝐸
(1+𝜈𝜈)(1−2𝜈𝜈)

𝐶𝐶44 =  𝐶𝐶55 =  𝐶𝐶66 =  𝐸𝐸
2(1+𝜈𝜈)

  (10) 

In the case of 1D models, the discretization along the longitudinal axis of the beam is made by 
means of the finite element method. The generalized displacements are in this way described as 
functions of the unknown nodal vector, 𝐪𝐪𝝉𝝉𝝉𝝉, and the 1D shape functions, 𝑁𝑁𝝉𝝉(𝑦𝑦): 

𝐮𝐮𝝉𝝉(𝑦𝑦) =  𝑁𝑁𝝉𝝉(𝑦𝑦)𝐪𝐪𝝉𝝉𝝉𝝉          𝑖𝑖 = 1, … ,𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (11) 

where 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the number of nodes per element and the unknown nodal vector is defined as: 

𝐪𝐪𝝉𝝉𝝉𝝉 =  �𝑞𝑞𝑢𝑢𝑥𝑥𝜏𝜏𝜏𝜏    𝑞𝑞𝑢𝑢𝑦𝑦𝜏𝜏𝜏𝜏    𝑞𝑞𝑢𝑢𝑧𝑧𝜏𝜏𝜏𝜏�
𝑇𝑇
  (12) 

Similarly, the FEM discretization of generalized displacements on the mid-surface of the plate 
can be written as follows: 

𝐮𝐮𝝉𝝉(𝑥𝑥,𝑦𝑦) =  𝑁𝑁𝝉𝝉(𝑥𝑥,𝑦𝑦)𝐪𝐪𝝉𝝉𝝉𝝉          𝑖𝑖 = 1, … ,𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (13)  

where 2D shape functions 𝑁𝑁𝝉𝝉(𝑥𝑥, 𝑦𝑦) are employed. Different sets of polynomials can be used to 
define FEM elements. Lagrange interpolating polynomials have been chosen in this work to 
generate both one-dimensional and two-dimensional elements. For the sake of brevity, their 
expression is not provided, but it can be found in the book by Carrera et. al [7], in which two-nodes 
(B2), three-nodes (B3) and four-nodes (B4) beam elements and four-nodes (Q4), nine-nodes (Q9) 
and sixteen-nodes (Q16) plate elements are described. By combining the FEM approximation with 
the kinematic assumptions of the Carrera Unified Formulation, the 3D displacement field can be 
written as: 

𝑫𝑫 =  𝐹𝐹𝝉𝝉𝑁𝑁𝝉𝝉𝐪𝐪𝝉𝝉𝝉𝝉          𝑖𝑖 = 1, … ,𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (14)  

where the functions 𝐹𝐹𝝉𝝉 and 𝑁𝑁𝑖𝑖 are defined according to the type of element (beam or plate). Note 
that in Eq. 14 the shape functions 𝑁𝑁𝑖𝑖 and the expanding functions 𝐹𝐹𝝉𝝉 are independent. A novel 
approach [9] is introduced considering a coupling by relating the expanding functions 𝐹𝐹𝝉𝝉 to the 
shape functions 𝑁𝑁𝑖𝑖 by means of the following formalism: 

𝑫𝑫 =  𝐹𝐹𝝉𝝉𝝉𝝉𝑁𝑁𝝉𝝉𝐪𝐪𝝉𝝉𝝉𝝉         (15)  

The difference of Eq. 15 from Eq. 14 is the additional superscript i of 𝑁𝑁𝑖𝑖, which is now an index 
also of the function 𝐹𝐹𝝉𝝉. This definition introduces the dependency of the kinematic assumptions to 
the FE nodes, namely the Node-Dependent Kinematics (NDK) [10]. 
Fluid modelling - DTS 
The choice on the DTS for non-stationary Favre Average Navier-Stokes for the fluid part is driven 
by the following considerations. The DTS scheme is similar to the approximate-Newton method, 
but has an additional sink term that can be controlled to optimize convergence. In fact, the iterative 
method is treated as a time-marching method based on a pseudo-time, and in this formulation, the 
physical-time derivative becomes a sink in the pseudo-time frame. The total system can be viewed 
as a steady-state calculation with a sink term dependent on the physical-time step. For large 
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physical-time steps, the sink term is small, the problem behaves like a steady-state problem and 
the Courant-Friedrichs-Lewy number based on the pseudo-time step (pseudo-CFL) should be set 
corresponding to the steady-state optimal values. For small time steps, the problem is sink 
dominated and the pseudo-CFL can be increased. Unlike the physical-time step, the pseudo-time 
step can be set locally depending on the local flow conditions and physical-time steps. The 
Reynolds Averaged Navier-Stokes (RANS) equations, in terms of Favre mass-averaged quantities, 
using the 𝑘𝑘 −  𝜔𝜔 turbulence model, in a Cartesian coordinate system can be rewritten: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+  𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌𝜌𝑢𝑢𝑗𝑗� = 0   (16)  

𝜕𝜕(𝜕𝜕𝑢𝑢𝜏𝜏)
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌𝜌𝑢𝑢𝑗𝑗𝑢𝑢𝑖𝑖� =  −  𝜕𝜕𝑝𝑝𝑡𝑡
𝜕𝜕𝑥𝑥𝑗𝑗

+  𝜕𝜕𝜏𝜏
�𝑗𝑗𝜏𝜏
𝜕𝜕𝑥𝑥𝑗𝑗

   (17)  

𝜕𝜕(𝜕𝜕𝐻𝐻�−𝑝𝑝𝑡𝑡)
𝜕𝜕𝜕𝜕

+  𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌𝜌𝑢𝑢𝑗𝑗𝐻𝐻�� =  𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝑢𝑢𝑖𝑖�̂�𝜏𝑗𝑗𝑖𝑖 + (𝜇𝜇 + 𝜎𝜎∗𝜇𝜇𝜕𝜕)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

−  𝑞𝑞𝑗𝑗�   (18)  

𝜕𝜕(𝜕𝜕𝜕𝜕)
𝜕𝜕𝜕𝜕

+  𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌𝜌𝑢𝑢𝑗𝑗𝑘𝑘� =  𝑆𝑆𝜕𝜕 + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�(𝜇𝜇 +  𝜎𝜎∗𝜇𝜇𝜕𝜕)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
�   (19)  

𝜕𝜕(𝜕𝜕𝜌𝜌)
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌𝜌𝑢𝑢𝑗𝑗𝜔𝜔� =  𝑆𝑆𝜌𝜌 + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�(𝜇𝜇 +  𝜎𝜎𝜇𝜇𝜕𝜕)
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥𝑗𝑗
�   (20)  

where  

𝐻𝐻� = ℎ +  1
2

(𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2) +  5
3
𝑘𝑘  (21)  

𝑝𝑝𝜕𝜕 = 𝑝𝑝 + 2
3
𝜌𝜌𝑘𝑘 =  𝜌𝜌𝜌𝜌𝜌𝜌 +  2

3
𝜌𝜌𝑘𝑘 =  𝜌𝜌 �𝜌𝜌 +  2𝜕𝜕

3𝑇𝑇
� =  𝜌𝜌𝜌𝜌�𝜌𝜌  (22)  

𝑆𝑆𝜕𝜕 = �̂�𝜏𝑗𝑗𝑖𝑖
𝜕𝜕𝑢𝑢𝜏𝜏
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝛽𝛽∗𝜌𝜌𝜔𝜔𝑘𝑘 (23)  

𝑆𝑆𝜌𝜌 = 𝜌𝜌𝜌𝜌 𝜌𝜌
𝜕𝜕
�̂�𝜏𝑗𝑗𝑖𝑖

𝜕𝜕𝑢𝑢𝜏𝜏
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝛽𝛽𝜌𝜌𝜔𝜔2 (24)  

and �̂�𝜏𝑗𝑗𝑖𝑖 indicate the sum of the molecular and Reynolds stress tensor components: 

�̂�𝜏𝑗𝑗𝑖𝑖 = (𝜇𝜇 + 𝜇𝜇𝜕𝜕) �
𝜕𝜕𝑢𝑢𝜏𝜏
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝜏𝜏

− 2
3
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

𝛿𝛿𝑖𝑖𝑗𝑗� −
2
3
𝜌𝜌𝑘𝑘𝛿𝛿𝑖𝑖𝑗𝑗  (25)  

The heat flux vector components 𝑞𝑞𝑗𝑗 are rewritten as: 

𝑞𝑞𝑗𝑗 = −� 𝜇𝜇
𝑃𝑃𝑃𝑃

+ 𝜇𝜇𝑡𝑡
𝑃𝑃𝑃𝑃𝑡𝑡
�  𝜕𝜕ℎ
𝜕𝜕𝑥𝑥𝑗𝑗

  (26)  

where 𝑃𝑃𝑃𝑃𝜕𝜕 is the turbulent Prandtl number. 
Innovation and significant results 
In the first part of the PhD programme, the focus was on the structural modelling. In particular, 
the NDK approach was exploited to investigate the behaviour of simple geometries through static 
and dynamic analyses. These analyses are conducted using an academic code. Through the Node-
Dependent Kinematic approach, a combination between mono- and bi-dimensional elements was 
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possible, obtaining a complete 3D field of displacements. The investigation highlighted the 
possibility to use adapted elements (see Fig. 3) to obtain adaptive meshing (see Fig. 2).   

 
  

 
 
 

 
 
 
 

 
 
 
 

Fig. 2 – Adaptive meshing              Fig. 3 – Adapted elements 
Note that in Fig. 2 is possible to connect elements with different number of nodes using a 

combination of 1D and 2D elements, exploiting the CUF. Moreover, in Fig. 3 is highlighted the 
fact that the 3D element can be distorted, maintaining a different discretization along the thickness. 
Several benchmark problems are tested using these elements, showing results in accordance with 
those tabulated in literature or obtained with commercial codes (Patran/Nastran®). These are 
important achievements considering that the fluid-structure interface have to connect a finer mesh 
for fluid analysis with a coarse one for structural analysis (adaptive mesh), also in region with 
complicated geometries (adapted and distorted elements) [11].  

Some important results are obtained considering a square plate with a concentrated load in the 
middle and a Razzaque’s skew plate with a set of concentrated loads at the mid-line of the top 
surface. In Fig. 4 is reported an example of mesh and in Fig. 5 is shown a magnification of an 
element between two zones with different number of nodes. 
 

  
  
 
 
 
 
 

          Fig. 4 – Square plate     Fig. 5 – Adapted 1D element 
 

The analysis with the reduced mesh allows to save DOFs: 
 

Table 1 – Comparison between DOFs of full and reduced mesh 
Square Plate Razzaque’s Plate 

DOFs Full: 11532 DOFs Full: 7500 
DOFs Reduced: 6600 DOFs Reduced: 4593 

Saving:  42.77% Saving:  38.76% 
 

Moreover, different distorted meshes are analysed and compared in terms of displacements and 
frequencies, as shown in Fig. 6. 



Aerospace Science and Engineering - III Aerospace PhD-Days Materials Research Forum LLC 
Materials Research Proceedings 33 (2023) 219-225  https://doi.org/10.21741/9781644902677-32 
 

 
225 

 

 

 

 
 

Fig. 6 – Different configurations of distorted meshes 
In all the cases considered, the percentage errors are below the 1% almost always. The next 

steps are to implement the information exchange between the fluid part and the structural part. 
Conclusion 
In conclusion, the work done by far has demonstrated the potentiality of the method and represents 
an important milestone for the achievement of the final target: the development of accurate fluid-
structure interaction models for aerospace problems. 
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