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Abstract. In this work, hierarchical Jacobi-based expansions are explored for the static analysis 
of multilayered beams, plates, and shells as structural theories as well as shape functions. Jacobi 
polynomials, denoted as 𝑃𝑃𝑝𝑝

(𝛾𝛾,𝜃𝜃), belong to the family of classical orthogonal polynomials and 
depend on two scalars parameters 𝛾𝛾 and 𝜃𝜃, with p being the polynomial order. Regarding the 
structural theories, layer wise and equivalent single-layer approaches can be used. It is 
demonstrated that the parameters 𝛾𝛾 and 𝜃𝜃 of the Jacobi polynomials are not influential for the 
calculations. These polynomials are employed in the framework of the Carrera Unified 
Formulation (CUF), which allows to generate of finite element stiffness matrices 
straightforwardly. Furthermore, Node-dependent Kinematics is used in the CUF framework to 
build global-local models to save computational costs and obtain reliable results simultaneously. 
Introduction 
As modern engineering requires complicated and computationally expensive structural static 
analyses, appropriate 1D and 2D structural theories and Finite Element (FE) shape functions can 
be adopted to diminish the computational costs. The Carrera Unified Formulation (CUF) [1] is a 
versatile method to build 1D and 2D models. The governing equations can be derived and 
expressed in a compact way and are invariant from the adopted structure theory.  

Considering the beam theories, Euler-Bernoulli Beam Model (EBBM) [2] and Timoshenko 
Beam Model (TBM) [3] are the classical formulations. For both, the cross-section is considered to 
be rigid in its plane. For EBBM, the shear deformation is neglected, while it is considered constant 
along the cross-section in the case of TBM. In the domain of CUF theories, Carrera and Giunta [4] 
used Higher Order Theories (HOT) derived from the Taylor polynomials. Furthermore, Carrera et 
al. [5] used Lagrange-like expansions over the cross-section. Concerning the FE models, Carrera 
et al. [1] used two-, three- and four-node Lagrange-like shape functions in the CUF framework.  

As far as 2D plate and shell FEs are considered, Thin Plate Theory (TPT) and Thin Shell Theory 
(TST) are the classical models, see Kirchhoff [6]. The line remains orthogonal to the plate/shell 
reference surface in these models. When the transverse shear deformation is added, the Reissner–
Mindlin [7,8] (also known as First-Order Shear Deformation Theory, FSDT) theory can be built. 
Carrera [9] proposed general HOT from the Taylor polynomials for the analysis of plates and shells 
for the CUF framework. The classical theories can be derived through penalization techniques 
from first-order Taylor. Furthermore, Carrera et al. [5] used Lagrange-like expansions along the 
thickness direction. Finally, Carrera et al. [1] used four-, eight- and nine-node FEs to study 
composite plates. 

Two approaches can be used when dealing with laminates: Equivalent Single Layer (ESL) and 
Layer-Wise (LW) models. In the first one, the number of unknowns is unaffected by the number 
of layers, while in the second one, they depend on the layers, see Carrera [10].  
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Jacobi polynomials are utilized for building shape functions and structural theories for the 
analysis of beams, plates, and shells in CUF. Carrera et al. [11] first used these polynomials to 
build structural theories in the framework of CUF. They originate several polynomials changing 
the two parameters γ and θ, i.e., Legendre, Chebyshev, see the book of Abramowitz and Stegun 
[12]. Szabo et al. [13] proposed a hp-version of FE derived from Legendre (i.e., γ and θ equal to 
zero) polynomials for beam, plate, and solid. Zappino et al. [14] compared Legendre and Lagrange 
shape functions for 2D plate elements. Concerning the expansion functions in CUF, Pagani et al. 
[15] used Legendre for 2D cross-section in beam formulation, while Carrera et al. [16] studied 
plates with 1D expansions from Chebyshev polynomials.  

Using enhanced models improves solutions' accuracy, but it increases costs. It is possible to use 
refined models in specific parts and low-fidelity models for the other part of the structure without 
using any mathematical artifices.  Carrera and Zappino [17] first presented a global-local analysis 
for beams called Node-Dependent Kinematics (NDK). This was extended to laminated composite 
plates and shells by Zappino et al. [18] and Li et al. [19], respectively. 
Hierarchical Jacobi polynomials for beams, plates, and shells 
In the framework of CUF, Hierarchical Jacobi (HJ) polynomials have been used to build shape 
functions and structural theories for beams, plates, and shells. These elements have the interesting 
capability to use hierarchical features.  

Jacobi polynomials are formulated using recurrence relations, see [12]. The Jacobi polynomials 
are described by the following expression:  

𝑃𝑃𝑝𝑝
(𝛾𝛾,𝜃𝜃)(𝜁𝜁) = �𝐴𝐴𝑝𝑝 + 𝐵𝐵𝑝𝑝�𝑃𝑃𝑝𝑝−1

(𝛾𝛾,𝜃𝜃)(𝜁𝜁) − 𝐶𝐶𝑝𝑝𝑃𝑃𝑝𝑝−2
(𝛾𝛾,𝜃𝜃)(𝜁𝜁) (1) 

where γ and θ are two scalar parameters, and p stands for the polynomial order. The formula is 
evaluated in the natural plane 𝜁𝜁 = [−1, +1] . The first values are 𝑃𝑃0

(𝛾𝛾, 𝜃𝜃) (𝜁𝜁) = 1 and 𝑃𝑃1
(𝛾𝛾, 𝜃𝜃) (𝜁𝜁) = 𝐴𝐴0𝜁𝜁 

+ 𝐵𝐵0. The explicit expressions of the scalars 𝐴𝐴p, 𝐵𝐵p, and 𝐶𝐶p can be found in [12].  
One-dimensional functions. It is possible to use HJ polynomials for building theories of 

structure along the thickness (z-axis) for plate and shell formulations, see Fig. 1 (a). Similarly, 
Jacobi-like shape functions can be adopted along the y-axis for the beam formulation, see Fig. 1 
(b).  For both cases, the building procedure is the same. However, for the sake of simplicity, one-
dimensional shape functions are first considered. In this case, two kinds of polynomials are used 
along the y axis: vertex (or node) and edge. Basically, there are two vertexes and a number of edge 
modes that depends on the polynomial order of the chosen elements.  

 
Figure 1: circle represents a vertex expansion, whereas triangle is an edge expansion. Theory of 

structure for plate and shell (a), shape functions for beam (b). 

Given that formulas are formally identical for both cases Lm (𝜁𝜁) is used to indicate the 
expansions. When the HJ polynomials are used as structural theories, P𝜏𝜏 (𝜁𝜁) is used, while Ni(𝜁𝜁) is 
adopted for the shape functions. The hierarchic functions are defined as follows: 
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𝐿𝐿1(𝜁𝜁) = 1
2

(1 − 𝜁𝜁)

𝐿𝐿2(𝜁𝜁) = 1
2

(1 + 𝜁𝜁)
𝐿𝐿𝑚𝑚(𝜁𝜁) = 𝜙𝜙𝑚𝑚−1(𝜁𝜁),𝑚𝑚 = 3,4, … ,𝑝𝑝 + 1

 (2) 

with 

𝜙𝜙𝑗𝑗(𝜁𝜁) = (1 − 𝜁𝜁)(+𝜁𝜁)𝑃𝑃𝑗𝑗−2
(𝛾𝛾,𝜃𝜃), 𝑗𝑗 = 2,3, … ,𝑝𝑝 (3) 

where 𝑝𝑝 indicates the polynomial order. Given the following property 

𝐿𝐿𝑚𝑚(−1) = 𝐿𝐿𝑚𝑚(+1) = 0,𝑚𝑚 ≥ 3 (4) 

The function Lm (𝜁𝜁), m= 3, 4, … are named bubble functions or edge expansions. 
Two-dimensional functions. It is possible to use HJ polynomials for building theories of 

structure in the cross-section (x-z plane) for beam formulation, see Fig. 2 (a). Similarly, Jacobi-
like shape functions can be adopted over the x-y plane for the plate and shell formulations, see Fig. 
2 (b). For both cases, the building procedure is the same. For the sake of simplicity, two-
dimensional shape functions are first considered. In this shape functions, three kinds of 
polynomials are used: vertex, edge, and internal. There are four vertex modes that vanish at all 
nodes but one. Contrarily, the number of edge modes changes according to the polynomial order 
of the FE, and they vanish for all sides of the domain but one. Finally, the internal modes are 
included from the fourth-order polynomial. They vanish at all sides. See [16] for more information. 

 
Figure 2: circle represents a vertex expansion, whereas triangle is an edge expansion and 

square indicates an internal expansion. Theory of structure for beam (a), shape functions for 
plate and shell (b). 

Given that formulas are formally identical for both cases Lm (𝜁𝜁) is used to indicate the 
expansions. When the HJ polynomials are used as structural theories, P𝜏𝜏 (𝜁𝜁) is used, while Ni (𝜁𝜁) 
is adopted for the shape functions. The vertex modes are written as follows: 

𝐿𝐿𝑚𝑚(𝜉𝜉, 𝜂𝜂) = 1
4

(1 − 𝜉𝜉𝑚𝑚𝜉𝜉)(1 − 𝜂𝜂𝑚𝑚𝜂𝜂),𝑚𝑚 = 1,2,3,4 (5) 

where 𝜉𝜉 and 𝜂𝜂 are calculated in the natural plane between -1 and +1, and 𝜉𝜉𝑚𝑚 and 𝜉𝜉𝑚𝑚 and 𝜂𝜂𝑚𝑚 are 
the vertexes. From 𝑝𝑝 ≥ 2, the edge modes arise in the natural plane as follows 
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𝐿𝐿𝑚𝑚 = 1
2

(1 − 𝜂𝜂)𝜙𝜙𝑝𝑝(𝜉𝜉),𝑚𝑚 = 5,9,13,18, …

𝐿𝐿𝑚𝑚 = 1
2

(1 + 𝜉𝜉)𝜙𝜙𝑝𝑝(𝜂𝜂),𝑚𝑚 = 6,10,14,19, …

𝐿𝐿𝑚𝑚 = 1
2

(1 + 𝜂𝜂)𝜙𝜙𝑝𝑝(𝜉𝜉),𝑚𝑚 = 7,11,15,20, …

𝐿𝐿𝑚𝑚 = 1
2

(1 − 𝜉𝜉)𝜙𝜙𝑝𝑝(𝜂𝜂),𝑚𝑚 = 8,12,16,21, …

 (6) 

where 𝑝𝑝 represents the polynomial degree of the bubble function 𝜙𝜙𝑗𝑗. Internal expansions are 
inserted for 𝑝𝑝 ≥ 4, they vanish at all the edges of the quadrilateral domain. There are (𝑝𝑝 − 2)(𝑝𝑝 −
3)/2 internal polynomials. By multiplying 1D edge modes, 𝐿𝐿𝑚𝑚 internal expansions are built. For 
instance, considering the fifth-order polynomials, three internal expansions are found, which are 

𝐿𝐿17 = 𝜙𝜙2(𝜉𝜉)𝜙𝜙2(𝜂𝜂), 2 + 2 = 4
𝐿𝐿22 = 𝜙𝜙3(𝜉𝜉)𝜙𝜙2(𝜂𝜂), 3 + 2 = 5
𝐿𝐿23 = 𝜙𝜙2(𝜉𝜉)𝜙𝜙3(𝜂𝜂), 2 + 3 = 5

 (7) 

Refined element based on CUF 
In this section, the Carrera Unified Formulation (CUF) is presented for beams, plates, and shells. 
Multilayered beam, plate and shell structures are shown in Fig. 3. 

 
Figure 3: Generic multilayered beam, plate, and shell structures.  

Concerning the beam model, the cross-section 𝐴𝐴 lays on the 𝑥𝑥 − 𝑧𝑧 plane of a Cartesian reference 
frame, whereas the beam axis is placed along the 𝑦𝑦 direction. Contrarily, the plate model uses the 
𝑧𝑧 coordinate along the thickness direction, and the coordinates 𝑥𝑥 and 𝑦𝑦 indicate the in-plane mid-
surface 𝛺𝛺0. The 2D shell uses a curvilinear reference system (𝛼𝛼, 𝛽𝛽, 𝑧𝑧) to account for the curvatures 
Rα and Rβ. The displacement vector for the models is introduced in the following 

𝐮𝐮𝑘𝑘(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = �𝑢𝑢𝑥𝑥𝑘𝑘,𝑢𝑢𝑦𝑦𝑘𝑘,𝑢𝑢𝑧𝑧𝑘𝑘�
𝑇𝑇

, 𝐮𝐮𝑘𝑘(𝛼𝛼,𝛽𝛽, 𝑧𝑧) = �𝑢𝑢𝛼𝛼𝑘𝑘 ,𝑢𝑢𝛽𝛽
𝑘𝑘, 𝑢𝑢𝑧𝑧𝑘𝑘�

𝑇𝑇
   (8) 

where 𝑘𝑘 indicates the layer.  The stress, 𝝈𝝈𝑘𝑘, and strain, 𝝐𝝐𝑘𝑘, vectors are defined as 

𝝈𝝈𝑘𝑘 = �𝜎𝜎𝑥𝑥𝑥𝑥𝑘𝑘 ,𝜎𝜎𝑦𝑦𝑦𝑦𝑘𝑘 ,𝜎𝜎𝑧𝑧𝑧𝑧𝑘𝑘 ,𝜎𝜎𝑥𝑥𝑥𝑥𝑘𝑘 ,𝜎𝜎𝑦𝑦𝑦𝑦𝑘𝑘 ,𝜎𝜎𝑥𝑥𝑥𝑥𝑘𝑘 �
𝑇𝑇

𝝐𝝐𝑘𝑘 = �𝜖𝜖𝑥𝑥𝑥𝑥𝑘𝑘 , 𝜖𝜖𝑦𝑦𝑦𝑦𝑘𝑘 , 𝜖𝜖𝑧𝑧𝑧𝑧𝑘𝑘 , 𝜖𝜖𝑥𝑥𝑥𝑥𝑘𝑘 , 𝜖𝜖𝑦𝑦𝑦𝑦𝑘𝑘 , 𝜖𝜖𝑥𝑥𝑥𝑥𝑘𝑘 �
𝑇𝑇

𝝈𝝈𝑘𝑘 = �𝜎𝜎𝛼𝛼𝑘𝑘 ,𝜎𝜎𝛽𝛽𝛽𝛽
𝑘𝑘 ,𝜎𝜎𝑧𝑧𝑧𝑧𝑘𝑘 ,𝜎𝜎𝛼𝛼𝛼𝛼𝑘𝑘 ,𝜎𝜎𝛽𝛽𝛽𝛽

𝑘𝑘 ,𝜎𝜎𝛼𝛼𝛼𝛼
𝑘𝑘 �

𝑇𝑇
𝝐𝝐𝑘𝑘 = �𝜖𝜖𝛼𝛼𝛼𝛼𝑘𝑘 , 𝜖𝜖𝛽𝛽𝛽𝛽

𝑘𝑘 , 𝜖𝜖𝑧𝑧𝑧𝑧𝑘𝑘 , 𝜖𝜖𝛼𝛼𝛼𝛼𝑘𝑘 , 𝜖𝜖𝛽𝛽𝛽𝛽
𝑘𝑘 , 𝜖𝜖𝛼𝛼𝛼𝛼

𝑘𝑘 �
𝑇𝑇 (9) 

The displacement–strain relations are expressed as 

𝝐𝝐𝑘𝑘 = 𝐛𝐛𝐮𝐮𝑘𝑘  (10) 

where 𝐛𝐛 is the matrix of differential operators, see [1] for more information. The constitutive 
relation for linear elastic orthotropic materials reads as: 

𝝈𝝈𝑘𝑘 = 𝐂𝐂𝑘𝑘𝝐𝝐𝑘𝑘  (11) 
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where 𝐂𝐂𝑘𝑘 is the material elastic matrix, see Bathe [20] for the explicit form.  
The 3D displacement field 𝐮𝐮𝑘𝑘(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) of the 1D beam and 2D plate and 𝐮𝐮𝑘𝑘(𝛼𝛼,𝛽𝛽, 𝑧𝑧) shell models 

can be expressed as a general expansion of the primary unknowns in Table 1. 
 

Table 1: CUF Formulation. 𝜏𝜏=1, …, M. 

Formulation 3D Field CUF Expansion 
1D beam 𝐮𝐮𝑘𝑘(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 𝐹𝐹𝜏𝜏𝑘𝑘(𝑥𝑥, 𝑧𝑧) 𝐮𝐮𝜏𝜏𝑘𝑘(𝑦𝑦) 
2D plate 𝐮𝐮𝑘𝑘(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 𝐹𝐹𝜏𝜏𝑘𝑘(𝑧𝑧) 𝐮𝐮𝜏𝜏𝑘𝑘(𝑥𝑥,𝑦𝑦) 
2D shell 𝐮𝐮𝑘𝑘(𝛼𝛼,𝛽𝛽, 𝑧𝑧) 𝐹𝐹𝜏𝜏𝑘𝑘(𝑧𝑧) 𝐮𝐮𝜏𝜏𝑘𝑘(𝛼𝛼,𝛽𝛽) 

𝐹𝐹𝜏𝜏 are the expansion functions of the generalized displacements 𝐮𝐮𝜏𝜏𝑘𝑘 the summing convention 
with the repeated indexes 𝜏𝜏 is assumed and 𝑀𝑀 denotes the order of expansion. Thanks to this 
formalism, it is possible to choose a generic structural theory freely. As explained in the previous 
sections, Taylor, Lagrange, and Jacobi polynomials can be used. Furthermore, the last two 
polynomials can be adopted in both ESL and LW approaches. 

The Finite Element Method (FEM) is adopted to discretize the generalized displacements 𝐮𝐮𝜏𝜏𝑘𝑘. 
Thus, recalling equations described in Table 1, they are approximated as displayed in Table 2. 

Table 2: Finite element method. 𝑖𝑖=1, …, Nn 

Formulation 3D Field FEM + CUF Expansion 
1D beam 𝐮𝐮𝑘𝑘(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 𝑁𝑁𝑖𝑖(𝑦𝑦) 𝐹𝐹𝜏𝜏𝑘𝑘(𝑥𝑥, 𝑧𝑧) 𝐮𝐮𝜏𝜏𝜏𝜏𝑘𝑘  
2D plate 𝐮𝐮𝑘𝑘(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 𝑁𝑁𝑖𝑖(𝑥𝑥,𝑦𝑦) 𝐹𝐹𝜏𝜏𝑘𝑘(𝑧𝑧) 𝐮𝐮𝜏𝜏𝜏𝜏𝑘𝑘  
2D shell 𝐮𝐮𝑘𝑘(𝛼𝛼,𝛽𝛽, 𝑧𝑧) 𝑁𝑁𝑖𝑖(𝛼𝛼,𝛽𝛽) 𝐹𝐹𝜏𝜏𝑘𝑘(𝑧𝑧) 𝐮𝐮𝜏𝜏𝜏𝜏𝑘𝑘  

𝑁𝑁𝑖𝑖 stand for the shape functions, the repeated subscript 𝑖𝑖 indicates summation, 𝑁𝑁𝑛𝑛 is the number 
of the FE nodes per element and 𝐮𝐮𝜏𝜏𝜏𝜏𝑘𝑘  are the following vectors of the FE nodal parameters: 

𝐮𝐮𝜏𝜏𝜏𝜏𝑘𝑘 = �𝑢𝑢𝑥𝑥𝜏𝜏𝜏𝜏
𝑘𝑘 ,𝑢𝑢𝑦𝑦𝜏𝜏𝜏𝜏

𝑘𝑘 ,𝑢𝑢𝑧𝑧𝜏𝜏𝜏𝜏
𝑘𝑘 �

𝑇𝑇
,  𝐮𝐮𝜏𝜏𝜏𝜏𝑘𝑘 = �𝑢𝑢𝛼𝛼𝜏𝜏𝜏𝜏

𝑘𝑘 ,𝑢𝑢𝛽𝛽𝜏𝜏𝜏𝜏
𝑘𝑘 ,𝑢𝑢𝑧𝑧𝜏𝜏𝜏𝜏�

𝑇𝑇
   (12) 

A further step can be made if the cross-sections functions are anchored to the nodes of beam 
elements. In this way, the so-called Node-dependent kinematics (NDK) method can be performed. 
Substantially, each FE node has its own structural theories. Thence, the 3D field is modified as  

𝐮𝐮𝑘𝑘 = 𝑁𝑁𝑖𝑖𝐹𝐹𝑘𝑘𝑘𝑘𝐮𝐮𝜏𝜏𝜏𝜏𝑘𝑘       (13) 

FE governing equations 
The Principle of Virtual Displacements is used for a static analysis, and it reads: 

∫ 𝛿𝛿𝝐𝝐𝑇𝑇𝝈𝝈d𝑉𝑉𝑘𝑘𝑉𝑉𝑘𝑘
= ∫ 𝛿𝛿𝐮𝐮𝑘𝑘𝑘𝑘𝐩𝐩𝑘𝑘d𝑉𝑉𝑘𝑘𝑉𝑉𝑘𝑘

 (14) 

where 𝐩𝐩 is the external load. When a cartesian frame is used d𝑉𝑉𝑘𝑘 = d𝑥𝑥d𝑦𝑦d𝑧𝑧, where for a 
curvilinear reference system d𝑉𝑉𝑘𝑘 = 𝐻𝐻𝛼𝛼𝐻𝐻𝛽𝛽d𝛼𝛼d𝛽𝛽d𝑧𝑧. The left-hand side is the variation of the 
internal work, while the right-hand side is the virtual variation of the external work. The real and 
the virtual systems are used, and displacements and virtual displacement are written as  

𝐮𝐮𝑘𝑘(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑁𝑁𝑖𝑖𝐹𝐹𝜏𝜏𝑘𝑘𝑘𝑘𝐮𝐮𝜏𝜏𝜏𝜏𝑘𝑘 ,        𝛿𝛿𝐮𝐮𝑘𝑘(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑁𝑁𝑗𝑗𝐹𝐹𝑠𝑠
𝑘𝑘𝑘𝑘𝛿𝛿𝐮𝐮𝑠𝑠𝑠𝑠𝑘𝑘  (15) 
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By using the CUF-type displacement functions in Eq. (13), the geometric relations in Eq. (10), and 
constitutive equations Eq. (11), the following expression can be obtained: 

𝐊𝐊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘 𝐮𝐮𝜏𝜏𝜏𝜏𝑘𝑘 = 𝐏𝐏𝑠𝑠𝑠𝑠𝑘𝑘  (16) 

where 𝐊𝐊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘 , a 3X3 matrix, is the fundamental nucleus (FN) of stiffness matrix, and 𝐏𝐏𝑠𝑠𝑠𝑠𝑘𝑘 , a 3X1 

vector, represents the FN of the load vector. See [1] for the explicit form of the components of the 
stiffness matrix for each formulation and the assembly procedure. 
Results 
Concerning the structural theories, T𝑃𝑃 indicates Taylor with order 𝑃𝑃, and LHJ𝑃𝑃 indicates layer-
wise Jacobi of 𝑃𝑃th polynomial order, whereas EHJ𝑃𝑃 stands for equivalent single-layer Jacobi. For 
the shape functions only the acronym, J𝑃𝑃 is used.  

A three-layered composite plate subjected to a sinusoidal pressure (see Fig. 4) with b/h=4 is 
studied with Jacobi-like polynomials along the thickness, see Pagano [21]. Nine-node Lagrangian 
shape functions are used for the FE mesh. The CUF based results were presented in [11].  

Figure 4: Shear stresses in [a/2, 0, z] of three-layer composite plate for LW and ESL. 
     As a second example, a thin-walled cylinder is analysed by using beam and shell formulations, 
see Fig. 5. This case is taken form Carrera et al. [22]. In this case, Jacobi-like shape functions are 
adopted, while Taylor polynomials are used as structural theories.  

Figure 5: Comparison for beam and shell formulations for thin-walled cylinder. Deformed 
cross-section at the midspan of the hollow cylinder. 

It is shown that the parameters 𝛾𝛾 and 𝜃𝜃 of the Jacobi polynomials are not influential for the 
calculations. Thence, Legendre-like polynomials can be adopted without loss of generality. 

Finally, a cantilever beam is considered, see [23, 24]. Fig. 6 shows the axial stresses near the 
clamped section. NDK models with Legendre-Legendre combination are compared with uniform 
models. In this case, the following notation is HLE5×a-HLE1×b, where a and b represent the number 
of nodes of the beam elements adopting the corresponding kinematics. Forty cubic Lagrange-like 
finite elements are used along y axis. 
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Figure 6: End-effects analysis for compact beam. Stresses evaluated in [0, y, h/2]. 
In proximity of the clamped section, the results calculated with NDK models are near to those 

referred to uniform kinematic HLE5 model. 
Conclusions 
The Carrera Unified Formulation (CUF) permits to build a huge number of models, by adopting 
different shape functions and structural theories in a hierarchical and coherent manner. In the 
present work, Jacobi polynomials have been included as shape functions and structural theories in 
analysis of beam, plates, and shells. It has demonstrated, however, that 𝛾𝛾 and 𝜃𝜃 of the Jacobi 
polynomials are not influential for the calculations.  Concerning the structural theories, using the 
equivalent single layer approach for the Lagrange and Jacobi-based expansions is useful to reduce 
the computational time. Furthermore, it is possible to use an advanced global-local analysis, that 
is Node-Dependent Kinematics, which can link different structural theories in the same finite 
element.  
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