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Abstract. Using a new hyperbolic shear deformation theory, higher-order closed-form solutions
to the static bending analysis of laminated composite spherical shells are derived in this study. The
current theory accurately predicts the distributions of transverse shear stresses across the thickness
of the shell. The governing equations and related boundary conditions are obtained using the
principle of virtual work. The Navier type semi-analytical closed-form solutions are obtained for
the simply supported boundary conditions. The results obtained using the present theory are
compared with previously published results to verify the accuracy and efficiency of the present
hyperbolic shear deformation theory.

Introduction

Due to their improved strength-to-weight and stiffness-to-weight ratios, laminated composite
materials have seen a significant rise in a variety of engineering applications over the past several
decades. They have found their way into a wide range of products, including innovative spacecraft
and aircraft components, boat and scull hulls, swimming pool panels, racing car bodies, sports
goods, sensor or actuator, catalysts etc. Transverse shear deformation is substantially more
significant in the kinematics of thick laminated composite shells than it is in homogeneous
metallic ones because advanced composite materials have low transverse shear modulus. Since 3-
D elasticity solutions for the laminated shells are involve complex mathematics, laminated shell
theories have been developed by researchers to make these problems mathematically more simple.
Laminated shell theories are approximate in nature as they are based on assumptions and
hypotheses that reduce a three-dimensional problem to a two-dimensional one. Sayyad and Ghugal
[1,2] provided a thorough study of displacement-based shear deformation theories for laminated
composite beams, plates, and shells. It is well-known that the classical shell theory is suitable for
the analysis of thin shell only due to neglect of transverse shear deformation. Mindlin [3]
considered the impact of shear deformation in the first order shear deformation theory, in which
transverse shear stress is constant across the thickness of shell and does not satisfy the traction free
boundary conditions at the top and bottom surfaces of the shell. Revisions to shell theories are
therefore necessary in order to take transverse shear and normal deformations into account. Reddy
[4] developed well-known parabolic shear deformation theory for the static and dynamic analysis
of laminated composite beams, plates and shells satisfying traction free boundary conditions. Liew
and Lim [5] presented the higher-order shell theory for the vibration analysis of doubly-curved
shallow shells. Tornabene and Ceruti [6], have conducted different studies on the static and
dynamic analysis of doubly curved shells and panels using refined shear deformation theories.
Using an extended higher-order shell theory, Sayyad and Ghugal [7] found higher-order closed-
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form solutions for static bending and free vibration analysis of laminated composite and sandwich
spherical shells. Shinde and Sayyad [8] have presented a new higher-order shear and normal
deformation theory for the free vibration analysis of laminated shells. In the present work, a new
hyperbolic shear deformation theory is developed for the static analysis of cross-ply laminated
composite spherical shells.

Laminated Shell under Consideration

As illustrated in Fig. 1, consider a differential element of a spherical shell in the (X, y, z) coordinate
systems where, x and y curves represents principal curvatures on the mid-plane of laminate. R, and
R, denote the principal radii of curvature of the mid-plane along x and y axes respectively. A cross-
ply laminated shell element is made up of fibrous composite materials and composed of a N
number of layers which are perfectly bonded together. A laminate is subjected to transverse load
q (x, y) on the top surface i.e. z=—h/2 because the downward z-direction is assumed as positive.
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Fig. 1. Laminated shell geometry and coordinate system

Kinematics of the Present Theory

The present theory is built upon the classical shell theory and considers the effects of transverse
shear and normal deformations in the in-plane and transverse displacements. Following is the
displacement field assumed for the present theory.

u(x,y,z)=(1+z/R Yuy(x,y)-zow,Jox+ [ (2)0.(x,y),

v(x,y,z)= (1 + Z/Ry;v0 (x.y)-zow,[ov+ f(2)0,(x¥), (1)
w(xy.z)=w,(xy)+C g(2)0.(x ).

where, u, v, w are the displacements of any point of the shell in x, y, z directions respectively.
6.,0,,0. are the shear slopes in x, y and z direction respectively. uo, vo, wo are the mid-plane

displacements of any point of the shell in x, y, z direction.

Strain Displacement Relationship

Using the linear theory of elasticity, the normal and shear strains associated with the present theory
can be obtained as,

&, =(0uy/ox+w, /R,)—z0*w, [ox* + £ (2)00, /ox+ C,( [ (2)/R,)6..

g, =(0v, /oy +w,/R,)—z0*w,[0v* + [ (2)86, Joy+ C,( [ (2)/R,)6..

£.=C f'(2)6., (2)
¥y =0u, [0y +0v, /ox—220"w, [oxdy + ()06, /3y + 806, [ox),

Ve =S (2)0,+C [ (2)006./ox;y,.=f (2)0,+C [ (2)08. /oy,
f(z)=zcosh(&/2)—h/Esinh(Ez/h), where & = 2.634.

Stress- Strain Relationship
Using the Hooke’s law, stresses for the k” layer of laminated shell can be obtained.
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o, _Qu 0, 0, O 0 0 ] x
o, O, On 05 0 0 0 ¥
O-z — Q13 Q23 Q33 0 O O gz . (3)
T, 0 0 0 O, O 0 |7y
T, 0 0 0 0 Q4 0 |7,
) L0 0 0 0 0 Ox]|lVe

where, 0,,0,,0.,T,,T,,T, are the stress components, Es& €Y s Ve sV ALE the strain

z2 Vxy? U xz? " yz

components. (Q,,0,,,0,5,0.,,0ss> 0435 O » Oss, Oy ) A€ the reduced stiffness coefficients as

follows.

0,=E (1 — Hys sy )/A;le =E, (/"21 L My )/A;le =E, (/131 + Ly My )/A;QM =Gy; )
0, =E, (1 ~Hi3 ki, )/A;st =E, (:u32 T ot )/A;Q33 = E, (1 T Hpth )/A;st =G3;04 = G-
Principle of Virtual Work

ab h/2 ab

[[ ] (0.0, +6,60,+0.50. +7,0r, +7.67, +7,.57, zdydx = | [ gSwdydx. (5)
00 —h/2 00

Substituting the expressions of stresses and strains from Egs. (2)-(4), into the Eq. (5), integrating
by parts, collecting the coefficients of unknowns and setting them equal to zero, one can derive
the following governing equation in terms of stress resultants as shown in Eq. (6).

ou,:0N, /ox+0ON,, [0y =0; ov,:0N, [dy+0ON,, [ox=0,

ow, :0°M [ox® +0° M [oy* +20°M, [oxdy— N, /R, —N, /R, +q =0,

30, :0M: [ox+oM}, [oy -0, =0, (0)
36,.:0M; [oy+0M:, [ox—Q,. =0,

66, :0S_/ox+3S,. Joy—S, /R, ~S, /R, ~5. =0.

where,
2

(NN N MMM )= [ 0,07,
—h/2
/2 hy2

20,,20,,2T,, sz;

(Mf’MyS’MxS}*):_h_‘-/z{[f(z)(o-ﬂo_wrxy):I}dZ; (QXZ’QyZ):_h_l./z{[f'(Z)(TH’TYZ):HQIZ; (7
h/2 /2
(SX,S},,SXZ,S},Z ) = hj/z[f (Z)(GX,G},,TXZ,TW )]dz; (S ) = ;!‘/2{0'2 [f (z)]}dz.

Further substituting the expression of stress resultants from Eq. (7) into Eq. (6), the governing
equations can be written in the following forms as stated in Egs. (8)-(13).

ouy | A, (0"u,/x + 0w, /R Ox) - B, 8w, [ox + C,, 06, [ox’ +(F, C, /R, )26, ox

+[ 4, (9%, Joxdy + ow, [ R ox) - B, 0w, [oxdy’ + C, 8°0), [oxdy +(F,C, R, )20, fox | (®)
+J4C, 00, Jox +[ A (0%u, [0y + 0%, [oxdy) — 2B, 0w, [oxdy” + Cys (9%, /0y + %0, foxay) | =o0.

8, :| 4y, (0", Joxdy + Ow, [R.8y) ~ B,, 0w, [ax’dy +C,, 0°6, [axdy+(F, C, /R, )90, [y

+[ A, (0%, /oy’ + 0w, R By)- By, 8w, Joy' +C,, 06, Jov* +(F,C,/R, )00, /6y] +J,,C, 06, /oy )

+| Ay, (0°u, Joxdy + v, fox" )~ 2B, 6w, fox' By + Cy (%6, Jaxdy + 00, [ox" ) | =0,
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ow,:| B, (%u,[ox* + 8w, [ROx* )~ I, 8w, [ox* + 0, 8°0, [ox’ +(L,,C /R, )00, [ox” |
+| B (0% [ox’ay + 8w, [R5 )~ 1, 0*w, [ex’0y” + 0, 06, [ox’ey +(L,C, R, ) %0, [ |
+[ (0%, fxoy® + 07w, RV ) -1, 0w, [ax’ey’ + 0,06, Joxdy” +(L,C, /R, )00, /6y2}
4| B (0, /0" + 0w, [R&Y )~ 1, 0w, [oy* + 0,80, [y +(L,,C /R, )00, [0y |
+[z o (0% (0507 + 50, [05° 0y ) = 41, 0*w, [0x°0y +20,, (06, Jaxty’ +0%, /axzay)} )
[ A, /R, (8uy Jox +w, /R.)~ (B, /R,)&*w, /x> +(C,, /R, )89x/8x+(F“C1/Rf)92]
~[ 4 /R.(0v, foy +w, [R,) = (B, /R, ) 0w, /oy +(Cy, /R,) 06, Joy +(F,C, /R R, ). |
~| 4R, (01 fox+wy[R,)~ (B, /R, )W, 0 +(C,o /R, )00, Jox +(F,C, /R R, ). |
[ Ay /R, (v, /0y +w, /R, )~ (B[R, )0 w, [0y* +(Cpy /R, )26, [0y +(F,C, /R )6 }
+(M,C,0%0. [ ox* )+ (M,C, 86. /0y ) = (J,C, /R, ) 0. = (J,C /R, ) 0. + g =0.
80,3 €\ (8%u, [ox’ + 0w, /R 0x) = 0, 0w, [0x* + B, 8°0, " + (R, ,C, R, ) 20, [ox |
+[ G, (9%, foxay + ow, R 0x) - O, W, [oxoy” + B, 8°0), Joxdy + (R,,C, /R, )00 fox |
+[ Coo (0°uy [0y” + 0, [oxdy) 20, 8w, foxdy” + By (66, [0y + %0, Jaxdy) |
+8,,C, 00, [ox — U0, — CU., 80, |ox = 0.
30, :| C,, (0°u, [oxdy + Ow, | R.0y) ~ Oy, 8w, [ 0x’Oy + B, %0, foxdy + (R, C, /R, )96 [y |
+[c22 (0%v,/oy* + 0wy R 7))~ 0y, 0w, [0V* + P, 88, [ov* +(Ry,C, /R, ) 06, /ay} +
+[ C66(0°u, foxdy + 0™, [ox> )~ 20668°w, [ax’dy + P66(8°0, [oxay + %0, [ox” ) |
8$,,C,00. /3y -U,, (6, +C,00.[dy) =
00, :—~(F,/R.)(u,/0x+w,/R,)+ L, 0*w, /R.0x* = R,00, /R 0x—-U,,C,/R 6.
Fy[R (8, /0y +w, /R, )+ L, W, [R.&" - R,00, |R, 0y ~U,,C,0./RR
-2Y,,C,0./R, —F, /R (0u, /ox +w, /R, )+ L,0°w, /R 0x" — R,00, /R ox-U,,C,0, /R R
—Fy |R, (v, /0y +wy /R, )+ Ly,0"w, [R, 85” = R3O, /R, &y —Up,C,0. /R —2Y,,C,6. /R, 13)
~J,5 (Ou JOx +wy R, )+ M, 0w, /x> = 5,500, [0x — J 5 (v, /Oy +w, /R, ) + My, 8w, [0y

Uss (06, /ox+C,0°0. /ox* )+ U, (06, Joy + C,8°0. [6y” ) - S,, 00, |y — Z,,C,6. =0.
where,

(11)

(12)
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h/2

(4,.8,.1,,C,.0 .0, ) =0, [ [1.0.2,2%, £ (2),2 (2).1 (2).1"(2) =

—h/2

( ) Qy hj‘z [f ] i Qy hj‘z Z;
—h/2 —h/2

n2

(LR 1) =0, [ 1/ ()20 (2). 7 (2) ] s

—h/2

( oS Q,, J. f ]dZ Q,, J. [ ] dz.

—h/2 ~h/2
Eq. (14) expresses the boundary condition associated with the present theory.
du,: N, =0,N_ =0; dv,: N, =0,N, =0

Ow, M, =0,M; =0,M, =0 ,0w, [0y =0;

oM [ox=0,0M? /oy =0,0M?, [ox =0; (14)
00, :M;=0,M; =0,00 M =0,M_ =0;

06,:5_=0,5_=0.

The Navier Solution Method

Laminated composite spherical shells subjected to transverse load is considered for the static

analysis. The top surface of the shell is subjected to a transverse load that is represented in terms
of double trigonometric series.

q(x,y)=q,sinaxsin By. (15)
where, a=7x/a,f=n/b and qo represents the intensity of the load. The unknown variables
uo,vo,wo,é?x,@y,é?z are assumed in the following double trigonometric forms, which satisfy the

simply supported boundary conditions exactly:

u, u, cosaxsinfy

v, v, sinaxcos By

w, w,. sinaxsin By 16
0. 16, cosaxsin By (16)
0, 0,,., Sinaxcos By

0. 6., sinaxsinfy |

w 6.

substituting Eq. (16) into Egs. (8)-(13), can be written in following compact form for the static
analysis of laminated composite spherical shell as given in Eq. (17).

[K]6><6{ }6><1 - {f}le' (17)

where, [K]is the stiffness matrix, {A}and{/}are the matrix of unknown displacements and

6. ,0  are the unknown parameters to be determined. Now,

ymn?® =~ zmn

where, u

matrix of force vectors respectively. Elements of stiffness matrix are written in Eq. (18).
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K, =—-4,a - A48, K,=-A,af - A.ap,

Ky =4,/R a+4,/R, p+B,a’ +B,af’ +2Baf’,

K, = —C“oz2 — C66,82, K,=-C,af-Cyap,

Ko =(F, /R, +F,[R, +J,)Car, Ky, = =4, 8* = A’

Ky =(4, /R, + Ay [R)) B+ B’ B+ By, + 2B’ B,

K,,=—C,af —Cyaf,K,,=—C,a’ —C,, 3,

Ky =(F,/R, +Fy[R, +Jy)CB,

Ky =—1a* -1, =20’ B (1, + 21 )

Ky, =2 (B, /R, +B,/R,) -2 (B,/R, +B,,[R, )~ 4, /R] - A, R} -2 4, R R,
K=K, +K,, (18)
K, =0, +0,ap +20,ap* +aC,, /R, + aCy,/R,,

Ky =0, + 0,0’ f+20,a° B+ BC, /R, + BCyy |R,,

Ky, =C, (—a2 (Lo /R, +L,/R,) - B*(L./R, +L22/Ry)—M,3a2)

Ky, =C,(~Myf* —F, [R} —F,, R} =2F,/RR, —J,[R, ~J,;/R,),

Ky =K, +K,,,

Ky =—PB,a’ =B’ ~Ug, Ky =—B,aff — Ryap,

Ky =Ca(R, /R +R,[R, +S,;~Usy), K =—Pyat’ = P, 3* ~U,,

Ky =CB(R,/R +Ry /R, +5y,-U,),

Ky =C}(-Ugya’ ~U,f ~U, [R; =2U, /R R, Uy, /R —2W,; /R ~2W,, /R - Z.,).
Numerical Result and Discussion

The following material properties stated in Eqgs. (19) and (20) are considered to obtain the static

deformation quantities of isotropic and orthotropic laminated spherical shells using the current
hyperbolic shell theory.

E=E,=E=210GPa,G,, =G, =G, =G =E/2(1+ u), p,=p,=pt;,= u="0.3. (19)
E, /Ez =125, Es/Ez =1, E3/E2 = 1’G12/E2 = G13/E2 =0.5, st/Ez =0.2, py, = 145 = 11, =0.25. (20)

The non-dimensional form stated in Eq. (21) is used to present the numerical results in tabular as
well as graphical form.

i0(0,b/2,h/2)=Eu/q,a’, w(aj2,b/2,0)=100n’E,w/q,a*,
(..5,)(a/2,b/2.0/2)=(F*/9,a* ) (o,.0,). 7, (0.0.h/2)=N"7, [q,a", (21)
7.(0,0,h/2)=hz_[qqa, 7,_(0,0,h/2)=hz /4,a.
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Table 1 Non-dimensional displacement and stresses in isotropic spherical shell under the
sinusoidal mechanical load (a/h=10, R, = R, = R).

R/a Theory i W g, o, 7, 7. 7,

5 Present 0.0434 2.6020 0.1437 0.1437 0.1225 0.2076 0.2076
Shinde and Sayyad [8] 0.0508 2.6099 0.1490 0.1490 0.1228 0.2272 0.2272
Reddy [4] 0.0506 2.6472 0.1519 0.1519 0.1225 0.2130 0.2130
Mindlin [3] 0.0502 2.6262 0.1506 0.1506 0.1230 0.2137 0.2137

50 Present 0.0383 2.9357 0.1901 0.1901 0.1093 0.2340 0.2340
Shinde and Sayyad [8] 0.0454 2.9407 0.1967 0.1967 0.1096 0.2559 0.2559
Reddy [4] 0.0456 29572 0.1962 0.1962 0.1102 0.2379 0.2379
Mindlin [3] 0.0452 29310 0.1944 0.1944 0.1109 0.2385 0.2385

100 Present 0.0377 29386 0.1918 0.1918 0.1078 0.2342 0.2342
Shinde and Sayyad [8] 0.0447 2.9435 0.1985 0.1985 0.1081 0.2562 0.2562
Reddy [4] 0.0450 29598 0.1979 0.1979 0.1088 0.2381 0.2381
Mindlin [3] 0.0446 29336 0.1961 0.1961 0.1095 0.2387 0.2387

00 Present 0.0371 29395 0.1935 0.1935 0.1062 0.2343 0.2343
Shinde and Sayyad [8] 0.0441 2.9445 0.2001 0.2001 0.1065 0.2563 0.2563
Reddy [4] 0.0444 29607 0.1994 0.1994 0.1074 0.2382 0.2382
Mindlin [3] 0.0440 29345 0.1976 0.1976 0.1080 0.2387 0.2387
Pagano [9] 0.0443 29425 0.1988 0.1988 0.2383 0.2383

Table 2 Non-dimensional displacement and stresses in (0°/90°) spherical shell under the
sinusoidal mechanical load (a/h=10, R, = R, = R).

R/a  Theory i w o, o, Ty T, 2=

5 Present 0.0097 1.1141 0.6515 0.0760 0.0691 0.1044 0.1266
Shinde and Sayyad [8] 0.0151 1.1200 0.6450 0.0759 0.0692 0.0930 0.1230
Reddy [4] 0.0151 1.1164 0.6530 0.0754 0.0694 0.0823 0.1382
Mindlin [3] 0.0148 1.1096 0.6262 0.0747 0.0686 0.0839 0.1402

50  Present 0.0160 1.2125 0.7388 0.0854 0.0552 0.1245 0.1269
Shinde and Sayyad [8] 0.0098 1.2186 0.7354 0.0856 0.0552 0.1159 0.1192
Reddy [4] 0.0100 1.2148 0.7424 0.0847 0.0555 0.1170 0.1230
Mindlin [3] 0.0096 1.2070 0.7116 0.0840 0.0546 0.1189 0.1250

100  Present 0.0163 1.2133 0.7410 0.0857 0.0541 0.1251 0.1264
Shinde and Sayyad [8] 0.0095 1.2194 0.7378 0.0858 0.0542 0.1168 0.1184
Reddy [4] 0.0096 1.2156 0.7447 0.0850 0.0545 0.1186 0.1216
Mindlin [3] 0.0092 1.2078 0.7138 0.0842 0.0536 0.1205 0.1235

00  Present 0.0165 1.2136 0.7428 0.0858 0.0530 0.1258 0.1258
Shinde and Sayyad [8] 0.0091 1.2197 0.7398 0.0860 0.0531 0.1176 0.1176
Reddy [4] 0.0092 1.2158 0.7466 0.0851 0.0534 0.1201 0.1201
Mindlin [3] 0.0088 1.2081 0.7156 0.0843 0.0525 0.1220 0.1220
Pagano [9] - 1.2250 0.7302 0.0886 0.0535 0.1210 0.1250

The non-dimensional displacements and stresses for an isotropic, (0°/90% and (0°90°/0%)
laminated spherical shells for aspect ratio 10 and R/a=5, 50, 100, c subjected to sinusoidal loading
are shown in Tables 1 through 3 using the present theory. The numerical findings are compared
with higher-order shear deformation theories that have been previously published. Additionally,
first-order shear deformation theory [3] and Pagano's exact elasticity solution [9] are used to
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compare the displacements and stresses for plate obtained using the present theory. As can be seen
from Table 1, the displacement and stresses obtained by the present theory are in good agreement
with those other higher-order theories. For plates, there is a less percentage of inaccuracy in the
precise and present theory results. Due to the influence of normal and shear deformations, the
findings obtained using the present theory are also superior to those obtained using other higher
order theories in the case of (0°/90°%) and (0°/90°/0°) laminated spherical shells. For (0°%90°) and
(0°/90°/0°) laminated composite spherical shells exposed to sinusoidal load, through-the-thickness
distributions of in-plane and transverse shear stresses are shown in Figs. 2 and 3.
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0.25 /-/

0.25
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Fig. 2 Stress distributions in (0°/90°) laminated composite spherical shells
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Conclusions

For the static analysis of laminated composite spherical shells, a new hyperbolic shell theory is
developed in this paper. To account for the impact of transverse shear and normal deformations,
the present theory is expanded with the introduction of hyperbolic shape functions in terms of
thickness coordinates. The kinematics of the present theory takes into consideration of traction-
free boundary conditions on the top and bottom surfaces of the shell as well as realistic distribution
of the transverse shear stresses throughout the thickness of the shell. Using the principle of virtual
work, the governing equations and accompanying boundary conditions are obtained. Using
Navier's solution method, higher-order closed form solutions for static analysis of simply
supported spherical shells are presented. By taking both curvature radii as infinite, these solutions
also apply to plates. The numerical findings for the plate using the present hyperbolic shell theory

are in good agreement with the exact elasticity solutions, demonstrating the validity and accuracy
of the present theory.
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Table 3 Non-dimensional displacement and stresses in (0°/90°/0°) spherical shell under the
sinusoidal mechanical load (a/h=10, R, = R, = R).

R/a  Theory u w o, o, 7, 7. T,

5 Present 0.0124 0.6713 0.5538 0.0394 0.0384 0.2246 0.0391
Shinde and Sayyad [8] 0.0112 0.6972 0.5455 0.0360 0.0399 0.3005 0.0395
Reddy [4] 0.0108 0.6769 0.5218 0.0352 0.0388 0.3508 0.1109
Mindlin [3] 0.0098 0.6025 0.4780 0.0311 0.0346 0.3658 0.1018

50  Present 0.0088 0.7062 0.5659 0.0399 .0287 0.2362 0.0411
Shinde and Sayyad [8] 0.0079 0.7345 0.5923 0.0396 0.0299 0.3165 0.0416
Reddy [4] 0.0075 0.7121 0.5662 0.0385 0.0290 0.3691 0.1167
Mindlin [3] 0.0069 0.6303 0.5153 0.0338 0.0257 0.3826 0.1064

100 Present 0.0086 0.7064 0.5652 0.0398 0.0280 0.2363 0.0411
Shinde and Sayyad [8] 0.0077 0.7348 0.5935 0.0397 0.0293 0.3167 0.0416
Reddy [4] 0.0073 0.7124 0.5674 0.0386 0.0283 0.3692 0.1167
Mindlin [3] 0.0067 0.6305 0.5163 0.0339 0.0252 0.3828 0.1064

0  Present 0.0084 0.7065 0.5644 0.0397 0.0274 0.2364 0.0411
Shinde and Sayyad [8] 0.0074 0.7349 0.5946 0.0398 0.0286 0.3167 0.0416
Reddy [4] 0.0071 0.7125 0.5684 0.0387 0.0277 0.3693 0.1168
Mindlin [3] 0.0065 0.6306 0.5172 0.0340 0.0246 0.3828 0.1065
Pagano [9] - 0.7528 0.5898 0.0418 0.0289 0.3570 0.1200
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