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Abstract. This work investigates the radial deformation of conductive magneto-hyperelastic solid 
cylinder subject to azimuthal magnetic field. It shows effect of the current density on the radial 
deformation of the solid. A simple magnetoelastic energy function is proposed for the cylinder 
under consideration such that its purely elastic part corresponds to the strain energy of the well-
known semilienar hyperelastic materials. The consequent magnetoelasticity field equations, in 
conjunction with the accompanying boundary conditions, are specialized for application to the 
problem of radial deformation of solid cylinder. The obtained magnetoelastic constitutive model 
shows that the stress distribution in the solids is sensitive to the magnetic induction while the 
associated magnetic field at point within the cylinder is deformation-dependent. Furthermore, it is 
revealed that the azimuthal magnetic induction produced by steady current within the solid 
cylinder increases along its radius. Finally, and among other things, the graphical illustration 
shows that the effect of steady axial current density on the magnitude of the displacement function 
at points within the cylinder is significantly pronounced. 
Introduction 
Conductive magnetoactive elastomers (CMEs) are magneto-sensitive materials that conduct 
electricity. They are manufactured by mixing micron/nano -size magnetic and conductive particles 
into nonmagnetic rubber-like matrices. CMEs exhibit change in mechanical response when subject 
to applied magnetic field and/ or current of electricity. The widespread applications of these 
materials have continued to instigate the needs for the development of new magnetoelasticity 
theories. In the fundamental formulation, magnetoelasticity field equations govern magneto-
mechanical interaction of solids. These equations consist of magnetostatic and elasticity fields 
equations, and are used to construct solutions to problems involving magnetoelastic deformation.  

Finite magnetoelastic interaction of solids has long been a subject of interest since the classic 
studies of Maugin [1], Eringen and Maugin [2] and Pao [3]. Recently, Pei et al. [4] investigated 
nonlinear magnetoelastic deformation of porous solids; Reddy and Saxena [5] studied instabilities 
in axisymmetric magnetoelastic deformation of a cylindrical membrane; Garcia-Gonzalez and 
Hossain [6] proposed a microstructural-based approach  to model magneto-viscoelasticity 
materials at finite strain; Ren et al. [7] studied multi-functional soft-bodied jellyfish-like 
swimming; Bostola and Hossain [8] gave a review on magneto-mechanical charactirizations of 
magnetorheological elastomers; Dorfman and Ogden [9] studied nonlinear theory of electroelastic 
and magnetoelastic interactions; Nedjar [10] proposed a modelling framework for finite strain 
magnetoviscoelasticity; and Saxena et al. [11] developed a finite deformation theory for magneto 
viscoelasticity. 

In view of Fadodun et al. [12], this work proposes a simple magnetoelastic energy function for 
conductive semilinear magnetohyperelastic solids. Using the laws of thermodynamic, Coleman-
Noll procedure and tensor calculus, the study develops a magnetoelastic constitutive model for the 
solids under consideration. The consequent magnetoelasticity field equations together with the 
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accompanying boundary conditions are specialized for applications to the problem of radial 
deformation of a conductive magnetoelastic cylinder subject to steady current of electricity. The 
rest of the paper is as follow: the first sections present magnetoelasticity field equations and 
constitutive relations while the remaining sections detail the solution to the radial deformation 
problem of magneto-sensitive solid cylinder subject to steady axial current density.  
Kinematics  
Consider a stress-free conductive magnetohyperelastic solid occupying the reference configuration 
Ω0 ⊂ ℝ3 with smooth boundary 𝜕𝜕Ω0 and surface outward unit normal vector 𝑁𝑁��⃗ . When subject to 
magnetic field and /or mechanical surface load the body deforms onto deformed configuration Ω 
with boundary 𝜕𝜕Ω and surface outward unit normal vector 𝑛𝑛�⃗ . The deformation of the body is 
defined by vector function 𝜑𝜑�⃗  

 
𝜑𝜑�⃗ :Ω�0 → Ω�,                                                                                                                              (1) 

 
such that �⃗�𝑥 = 𝜑𝜑�⃗ (�⃗�𝑋) where �⃗�𝑋 denotes position vector of material points in Ω0 and �⃗�𝑥 represents 
position vector of the corresponding material points in Ω. The closures Ω0 and Ω in Eq. (1) are 
defined by 

 
Ω�0 = Ω0 ∪ 𝜕𝜕Ω0    𝑎𝑎𝑛𝑛𝑎𝑎   Ω� = Ω ∪  𝜕𝜕Ω.   
 
The deformation gradient 𝑭𝑭 is defined by 

 
𝑭𝑭 = 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎 �⃗�𝑥 = 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎 𝜑𝜑�⃗ (�⃗�𝑋) ,                                                                                                       (2) 
 
where 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎 is the gradient operator with respect to Ω0. At an arbitrary point �⃗�𝑋, the determinant 
det(𝑭𝑭) > 0 measures the local volume change. 
Applying the polar decomposition theorem, the deformation gradient 𝑭𝑭 is decomposed into 
product of second-rank tensors 𝑶𝑶𝐷𝐷and U 
 
𝑭𝑭 = 𝑶𝑶𝐷𝐷𝑼𝑼,                                                                                                                                  (3) 
 
where 𝑶𝑶𝐷𝐷 is the orthogonal rotation tensor and  𝑼𝑼 is the right stretch symmetric tensor. 
The tensors 𝑼𝑼 and 𝑶𝑶𝐷𝐷 are obtained by the relations 
 
𝑼𝑼 = √𝑭𝑭𝑇𝑇𝑭𝑭 =  √𝑪𝑪   𝑎𝑎𝑛𝑛𝑎𝑎   𝑶𝑶𝐷𝐷 =  𝑭𝑭𝑼𝑼−1,                                                                                    (4) 

 
where 𝑭𝑭𝑇𝑇is the transpose of 𝑭𝑭, 𝑼𝑼−1 is the inverse of  𝑼𝑼 and 𝑪𝑪 = 𝑭𝑭𝑇𝑇𝑭𝑭 is the right Cauchy-Green 
deformation tensor [12]. 
Eulerian Form/Description: Magneto-Mechanical Field Equations 
Let 𝐻𝐻��⃗ ,𝐵𝐵�⃗  𝑎𝑎𝑛𝑛𝑎𝑎 𝑀𝑀��⃗  denote the Eulerian forms of the magnetic field, magnetic induction and effective 
magnetization vectors respectively. For a purely magnetostatic field produced by steady current, 
and in the absence of electric interaction and surface current the Maxwell's field equations read 
𝑐𝑐𝑐𝑐𝐺𝐺𝑐𝑐 𝐻𝐻��⃗ = 4𝜋𝜋𝐽𝐽,       𝑎𝑎𝑑𝑑𝑑𝑑 𝐵𝐵�⃗ = 0,                                                                                                 (5) 
 

where the operators 𝑎𝑎𝑑𝑑𝑑𝑑  𝑎𝑎𝑛𝑛𝑎𝑎  𝑐𝑐𝑐𝑐𝐺𝐺𝑐𝑐 are defined in the deformed configuration Ω and 𝐽𝐽 is the current 
density in Eulerian form. The current density 𝐽𝐽 satisfies the equation 
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𝑎𝑎𝑑𝑑𝑑𝑑 𝐽𝐽 = 0.                                                                                                                                (6) 
 
In magnetic materials, the vectors 𝐻𝐻��⃗ ,𝐵𝐵�⃗  𝑎𝑎𝑛𝑛𝑎𝑎 𝑀𝑀��⃗  are related by the constitutive law 
 
𝐵𝐵�⃗ = 𝜇𝜇𝐻𝐻��⃗ = 𝜇𝜇0(𝐻𝐻����⃗ + 𝑀𝑀)�����⃗ ,                                                                                                           (7) 
 
where 𝜇𝜇 is the magnetic permeability of the material and 𝜇𝜇0 is the magnetic permeability of free 
space. 
In free space exterior to the body, the corresponding magnetostatic fields are denoted by vectors 
𝐻𝐻��⃗ ∗ and 𝐵𝐵�⃗ ∗, which are governed by the equations 
 
𝑐𝑐𝑐𝑐𝐺𝐺𝑐𝑐 𝐻𝐻��⃗ ∗ = 0�⃗ ,   𝑎𝑎𝑑𝑑𝑑𝑑 𝐵𝐵�⃗ ∗ = 0,      𝐵𝐵�⃗ ∗ =  𝜇𝜇0𝐻𝐻��⃗ ∗.                                                                               (8) 
 
At the bounding surface of the considered material in the deformed configuration Ω, the standard 
boundary conditions associated with Eq. (5) are 
 
𝑛𝑛�⃗ × �𝐻𝐻��⃗ ∗ − 𝐻𝐻��⃗ � = 0�⃗ ,    𝑛𝑛�⃗ ∙ �𝐵𝐵�⃗ ∗ − 𝐵𝐵�⃗ � = 0           𝑜𝑜𝑛𝑛     𝜕𝜕Ω,                                                            (9) 
 
where 𝑛𝑛�⃗  is the unit outward normal vector on 𝜕𝜕Ω. 
Let 𝑻𝑻 denote the total stress tensor which incorporates magnetostatic body forces. In the absence 
of mechanical body forces the mechanical equilibrium equation reads 
 
𝑎𝑎𝑑𝑑𝑑𝑑 𝑻𝑻 = 0�⃗ .                                                                                                                                (10) 
 
The standard boundary condition accompanying the equilibrium equation is 
 
𝑻𝑻𝑛𝑛�⃗ = 𝑡𝑡𝑎𝑎 + 𝑡𝑡𝑚𝑚       𝑜𝑜𝑛𝑛     𝜕𝜕Ω,                                                                                                     (11) 
 
where 𝑡𝑡𝑎𝑎 is the mechanical traction on 𝜕𝜕Ω per unit area, 𝑡𝑡𝑚𝑚 = 𝑻𝑻∗𝑛𝑛�⃗  is the load due to the Maxwell 
stress 
 
𝑻𝑻∗ = 𝜇𝜇0�𝐻𝐻��⃗ ∗⨂𝐻𝐻��⃗ ∗� −

1
2
𝜇𝜇0(𝐻𝐻��⃗ ∗ ∙ 𝐻𝐻��⃗ ∗)𝑰𝑰,                                                                                       (12) 

 
and 𝑰𝑰 is the second-order unit tensor in Ω [9, 12]. 
Lagrangian Form/Description: Magneto-Mechanical Field Equations 
Let 𝐻𝐻��⃗ 𝐿𝐿 , 𝐵𝐵�⃗ 𝐿𝐿 𝑎𝑎𝑛𝑛𝑎𝑎 𝑀𝑀��⃗ 𝐿𝐿 denote the Lagrangian magnetic field, magnetic induction and effective 
magnetization vectors respectively. The Lagrangian variables 𝐻𝐻��⃗ 𝐿𝐿 , 𝐵𝐵�⃗ 𝐿𝐿 𝑎𝑎𝑛𝑛𝑎𝑎 𝑀𝑀��⃗ 𝐿𝐿  are related to the 
Eulerian quantities  𝐻𝐻��⃗ ,𝐵𝐵�⃗  𝑎𝑎𝑛𝑛𝑎𝑎 𝑀𝑀��⃗  by 
𝐻𝐻��⃗ 𝐿𝐿 = 𝑭𝑭𝑇𝑇𝐻𝐻��⃗ , 𝐵𝐵�⃗ 𝐿𝐿 = det(𝑭𝑭)𝑭𝑭−1𝐵𝐵�⃗ , 𝑀𝑀��⃗ 𝐿𝐿 = 𝑭𝑭𝑇𝑇𝑀𝑀��⃗ ,                                                                   (13) 
 

where the tensor 𝑭𝑭−1 is the inverse of 𝑭𝑭  and det(𝑭𝑭) is the determinant of 𝑭𝑭. 
The magnetostatic field equations in Lagrangian forms read 
 
𝐶𝐶𝑐𝑐𝐺𝐺𝑐𝑐 𝐻𝐻��⃗ 𝐿𝐿 = 4𝜋𝜋𝐽𝐽𝐿𝐿 ,       𝐷𝐷𝑑𝑑𝑑𝑑 𝐵𝐵�⃗ 𝐿𝐿 = 0,                                                                                            (14) 
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where the operators 𝐷𝐷𝑑𝑑𝑑𝑑  𝑎𝑎𝑛𝑛𝑎𝑎  𝐶𝐶𝑐𝑐𝐺𝐺𝑐𝑐 are defined in the reference configuration Ω0, and 𝐽𝐽𝐿𝐿 =
det(𝑭𝑭)𝑭𝑭−1𝐽𝐽 is the Lagrangian current density satisfying the equation 
 
𝐷𝐷𝑑𝑑𝑑𝑑 𝐽𝐽𝐿𝐿  = 0.                                                                                                                             (15) 
 
Similarly, the vectors Let 𝐻𝐻��⃗ 𝐿𝐿 , 𝐵𝐵�⃗ 𝐿𝐿 𝑎𝑎𝑛𝑛𝑎𝑎 𝑀𝑀��⃗ 𝐿𝐿  are related by 
 
𝐵𝐵�⃗ 𝐿𝐿 = 𝜇𝜇0det (𝑭𝑭)𝑪𝑪−1(𝐻𝐻��⃗ 𝐿𝐿 + 𝑀𝑀��⃗ 𝐿𝐿).                                                                                              (16) 
 
In addition, the vectors 𝐻𝐻��⃗ 𝐿𝐿 𝑎𝑎𝑛𝑛𝑎𝑎  𝐵𝐵�⃗ 𝐿𝐿 satisfy the standard boundary conditions 
 
𝑁𝑁��⃗ × �𝑭𝑭𝑇𝑇𝐻𝐻��������⃗ ∗ − 𝐻𝐻��⃗ 𝐿𝐿� = 0�⃗ ,    𝑁𝑁��⃗ ∙ �det(𝑭𝑭)𝑭𝑭−1𝐵𝐵�⃗ ∗ − 𝐵𝐵�⃗ 𝐿𝐿� = 0   𝑜𝑜𝑛𝑛    𝜕𝜕Ω0.                                   (17) 
 
Let 𝑷𝑷 denote the total first Piola-Kirchhoff's stress tensor. The total stress tensor 𝑻𝑻 and first Piola-
Kirchhoff's stress tensor 𝑷𝑷 are related by 
 
𝑷𝑷 = det(𝑭𝑭)𝑻𝑻𝑭𝑭−𝑇𝑇,                                                                                                                  (18) 
 
where 𝑭𝑭−𝑇𝑇 is the inverse of 𝑭𝑭𝑇𝑇. 
In term of 𝑷𝑷 the equilibrium equation assumes the equivalent form 
 
𝐷𝐷𝑑𝑑𝑑𝑑 𝑷𝑷 =  0�⃗ .                                                                                                                            (19) 
 
The corresponding boundary condition reads 
 
𝑷𝑷𝑁𝑁��⃗ = 𝑡𝑡𝐹𝐹 + 𝑡𝑡𝑚𝑚𝐹𝐹       𝑜𝑜𝑛𝑛     𝜕𝜕Ω0,                                                                                              (20) 
 
where 𝑡𝑡𝐹𝐹 is the mechanical traction on 𝜕𝜕Ω0 per unit area, 𝑡𝑡𝑚𝑚𝐹𝐹 = 𝑷𝑷∗𝑁𝑁��⃗  and 𝑷𝑷∗ = 𝑷𝑷 = det(𝑭𝑭)𝑻𝑻∗𝑭𝑭−𝑇𝑇 
is the pull back version of the Maxwell stress 𝑻𝑻∗ [12]. 
Magnetoelastic Energy Function and Constitutive Model 
In order to complete the mathematical equations formulation for the study, we choose the 
deformation gradient 𝑭𝑭 and magnetic induction vector 𝐵𝐵�⃗ 𝐿𝐿 as independent variables; and model 
magnetoelastic constitutive laws that give first Piola-Kirchhoff stress tensor 𝑷𝑷 and magnetic field 
vector 𝐻𝐻��⃗ 𝐿𝐿 in terms of 𝑭𝑭 and 𝐵𝐵�⃗ 𝐿𝐿. Consequently, we take the magnetoelastic Helmholtz free energy 
function Φ = Φ(𝑭𝑭,𝐵𝐵�⃗ 𝐿𝐿) to depend on 𝑭𝑭 and 𝐵𝐵�⃗ 𝐿𝐿, and ensure the objectivity condition 
 
Φ(𝐐𝐐𝑭𝑭,𝐵𝐵�⃗ 𝐿𝐿) = Φ(𝑭𝑭,𝐵𝐵�⃗ 𝐿𝐿), 
 
is satisfied for all proper orthogonal second-rank tensor 𝐐𝐐. 
Using the laws of thermodynamics and Coleman-Noll procedure, the first Piola-Kirchhoff stress 
tensor 𝑷𝑷 and the Lagrangian magnetic field vector 𝐻𝐻��⃗ 𝐿𝐿 are obtained through the relations 
 
𝑷𝑷 = 𝜕𝜕Φ(𝑭𝑭,𝐵𝐵�⃗ 𝐿𝐿)

𝜕𝜕𝑭𝑭
,              𝐻𝐻��⃗ 𝐿𝐿 = 𝜕𝜕Φ(𝑭𝑭,𝐵𝐵�⃗ 𝐿𝐿)

𝜕𝜕𝐵𝐵�⃗ 𝐿𝐿
.                                                                                        (21) 

 
Now, we recall and state the elastic strain energy function Φ∗ per unit volume 
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Φ∗(𝑭𝑭 ) = 1

2
𝜆𝜆𝑒𝑒𝕀𝕀12(𝑼𝑼− 𝑰𝑰0) + 𝜇𝜇𝑒𝑒𝕀𝕀2(𝑼𝑼 − 𝑰𝑰0),                                                                             (22) 

 
for an isotropic semilinear hyperelastic solid, where 𝕀𝕀1(𝑼𝑼− 𝑰𝑰0) is the first invariant of the second-
rank tensor (𝑼𝑼− 𝑰𝑰0), 𝕀𝕀2(𝑼𝑼− 𝑰𝑰0) = 𝕀𝕀1(𝑼𝑼− 𝑰𝑰0)2, 𝜆𝜆𝑒𝑒 ,𝜇𝜇𝑒𝑒 are the Lame's constants and 𝑰𝑰0 is the 
second-rank unit tensor in the reference configuration [12] 
 
Following Fadodun el al. [12], Melnikov and Ogden [13] and Dorfmann and Ogden [14], we 
generalize and consider a simple energy function of the form 
 
Φ�𝑭𝑭,𝐵𝐵�⃗ 𝐿𝐿� = 1

2
𝜆𝜆𝑒𝑒𝕀𝕀12(𝑼𝑼 − 𝑰𝑰0) + 𝜇𝜇𝑒𝑒𝕀𝕀2(𝑼𝑼− 𝑰𝑰0) + 1

2µ
𝐵𝐵�⃗ 𝐿𝐿 ∙ 𝑼𝑼 ∙ 𝐵𝐵����⃗ 𝐿𝐿,                                              (23) 

 
for the magnetoelastomeric solid under consideration such that its purely elastic part corresponds 
to the semilinear hyperelastic energy function in Eq. (22), where the scalar µ is the permeability 
of the solid. 
 
The Frechet derivatives of invariants 𝕀𝕀1(𝑼𝑼−)2 and  𝕀𝕀12(𝑼𝑼 − 𝑰𝑰0) with respect to 𝑭𝑭 are [12] 
 
𝜕𝜕𝕀𝕀1(𝑼𝑼−𝑰𝑰0)2

𝜕𝜕𝑭𝑭 
= 2(𝑼𝑼− 𝑰𝑰0) 𝜕𝜕𝑼𝑼

𝜕𝜕𝑭𝑭
= 2(𝑼𝑼− 𝑰𝑰0)𝑶𝑶𝐷𝐷𝑇𝑇 = 2(𝑭𝑭𝑇𝑇 − 𝑶𝑶𝐷𝐷𝑇𝑇),                                              (24) 

 
and 
 
𝜕𝜕𝕀𝕀12(𝑼𝑼−𝑰𝑰0)

𝜕𝜕𝑭𝑭 
= 2𝕀𝕀1(𝑼𝑼 − 𝑰𝑰0)𝑰𝑰0

𝜕𝜕𝑼𝑼
𝜕𝜕𝑭𝑭

= 2𝕀𝕀1(𝑼𝑼 − 𝑰𝑰0)𝑰𝑰0𝑶𝑶𝐷𝐷𝑇𝑇 = 2𝕀𝕀1(𝑼𝑼− 𝑰𝑰0)𝑶𝑶𝐷𝐷𝑇𝑇,                             (25) 
 
respectively. The tensors 𝑶𝑶𝐷𝐷𝑇𝑇 and 𝑭𝑭𝑇𝑇 are transposes of 𝑶𝑶𝐷𝐷 and 𝑭𝑭. 
Next, the Fréchet derivative of invariant 𝐵𝐵�⃗ 𝐿𝐿 ∙ 𝑼𝑼 ∙ 𝐵𝐵����⃗ 𝐿𝐿 with respect to 𝑭𝑭 is 
 
𝜕𝜕𝐵𝐵�⃗ 𝐿𝐿∙𝑼𝑼∙𝐵𝐵���⃗ 𝐿𝐿

𝜕𝜕𝑭𝑭
= �𝐵𝐵�⃗ 𝐿𝐿⨂𝐵𝐵�⃗ 𝐿𝐿�

𝜕𝜕𝑼𝑼
𝜕𝜕𝑭𝑭

= �𝐵𝐵�⃗ 𝐿𝐿⨂𝐵𝐵�⃗ 𝐿𝐿�𝑶𝑶𝐷𝐷𝑇𝑇.                                                                             (26) 
 
In view of Eqs. (24)-(26), and substituting Eq. (23) into Eq. (21) gives the total first Piola-
Kirchhoff's stress tensor 𝑷𝑷 
 

𝑷𝑷 = 𝜕𝜕Φ(𝑭𝑭,𝐵𝐵�⃗ 𝐿𝐿)
𝜕𝜕𝑭𝑭

= 2𝜇𝜇𝑒𝑒𝑭𝑭𝑇𝑇 + �(𝜆𝜆𝑒𝑒𝕀𝕀1(𝑼𝑼− 𝑰𝑰0) − 2𝜇𝜇𝑒𝑒)𝑰𝑰0 + 1
2µ
�𝐵𝐵�⃗ 𝐿𝐿⨂𝐵𝐵�⃗ 𝐿𝐿��𝑶𝑶𝐷𝐷𝑇𝑇,                         (27) 

and deformation-dependent magnetic field vector 𝐻𝐻��⃗ 𝐿𝐿 
 
𝐻𝐻��⃗ 𝐿𝐿 = 𝜕𝜕Φ(𝑭𝑭,𝐵𝐵�⃗ 𝐿𝐿)

𝜕𝜕𝐵𝐵�⃗ 𝐿𝐿
= 1

µ
𝑼𝑼𝐵𝐵�⃗ 𝐿𝐿,                                                                                                         (28) 

 
as the magnetoelastic constitutive model for the magnetoelastic solids under consideration, where 
⨂ denotes the tensor product. 
In view of Eq. (18), the corresponding Eulerian total stress tensor 𝑻𝑻 is 
 

𝑻𝑻 = (det (𝑭𝑭))−1 �2𝜇𝜇𝑒𝑒𝑭𝑭2𝑇𝑇 + �(𝜆𝜆𝑒𝑒𝕀𝕀1(𝑼𝑼− 𝑰𝑰0) − 2𝜇𝜇𝑒𝑒)𝑰𝑰0 + 1
2µ
�𝐵𝐵�⃗ 𝐿𝐿⨂𝐵𝐵�⃗ 𝐿𝐿�� (𝑭𝑭𝑶𝑶𝐷𝐷)𝑇𝑇�. 



Advanced Topics in Mechanics of Materials, Structures and Construction - AToMech1-2023 Materials Research Forum LLC 
Materials Research Proceedings 31 (2023) 715-725  https://doi.org/10.21741/9781644902592-73 
 

 
720 

 
Remark 1: The obtained magnetoelastic constitutive model in Eqs. (27) and (28) shows that the 
stress distribution is sensitive to the magnetic induction generated while the magnetic field at point 
within the body is deformation-dependent. 
 
Remark 2: In the absence of externally applied magnetic field, the magnetic induction vector 
varnishes at points within the solids, and the derived constitutive equations degenerate to 𝑷𝑷 =
2𝜇𝜇𝑒𝑒𝑭𝑭𝑇𝑇 + (𝜆𝜆𝑒𝑒𝕀𝕀1(𝑼𝑼− 𝑰𝑰0) − 2𝜇𝜇𝑒𝑒)𝑶𝑶𝐷𝐷𝑇𝑇 and 𝐻𝐻��⃗ 𝐿𝐿 = 0�⃗  which yield purely mechanical stress in the 
solids [12]. In addition, if the stretch symmetric tensor 𝑼𝑼 = 𝑰𝑰0 the derived model degenerates to  
𝑷𝑷 = 1

2𝜇𝜇𝐿𝐿
�𝐵𝐵�⃗ 𝐿𝐿⨂𝐵𝐵�⃗ 𝐿𝐿�𝑶𝑶𝐷𝐷𝑇𝑇 and 𝐻𝐻��⃗ 𝐿𝐿 = 1

µ
𝐵𝐵�⃗ 𝐿𝐿 which implies that the body exhibits purely magnetic 

behaviour. 
Application: Magnetoelastic Deformation of Conductive Hyperelastic Cylinder 
In view of the constitutive Eqs. (27) and (28), it is convenient to solve the problem of the radial 
deformation of conductive semilinear magneto-hyperelastic solid cylinder in the Lagrangian frame 
of reference. The theory of magnetoelastcity presented in the previous sections is now specialized 
for application to the problem of magnetoelastic deformation of a solid cylinder. The cylinder 
under consideration has radius 𝐴𝐴 and is subject to uniform axial current density. The geometry of 
the cylinder is assumed to be sufficiently long/thin such that the edge effect is neglected. 
Let the cylindrical coordinates (𝑅𝑅,Θ,𝑍𝑍) with associated unit basis vectors 𝐸𝐸�⃗ 𝑅𝑅 ,𝐸𝐸�⃗ Θ,𝐸𝐸�⃗ 𝑍𝑍 describe the 
position vector 𝑅𝑅�⃗ = 𝑅𝑅𝐸𝐸�⃗ 𝑅𝑅 + 𝑍𝑍𝐸𝐸�⃗ 𝑍𝑍 of material point of the cylinder in the reference configuration 
defined by 
 
0 ≤ 𝑅𝑅 ≤ 𝐴𝐴,    0 ≤ Θ ≤ 2𝜋𝜋,    0 ≤ 𝑍𝑍 ≤ 𝐿𝐿,                                                                               (29) 
 
where 𝐴𝐴 and 𝐿𝐿 are the radius and length of the cylinder respectively.  
Invoking the constraint of circular symmetry, and let the cylindrical coordinates (𝐺𝐺, 𝜃𝜃, 𝑧𝑧) with unit 
basis vectors 𝑒𝑒𝑟𝑟 , 𝑒𝑒𝜃𝜃, 𝑒𝑒𝑧𝑧 give the position vector 𝐺𝐺 = 𝐺𝐺𝑒𝑒𝑟𝑟 + 𝑧𝑧𝑒𝑒𝑧𝑧  of the corresponding material point 
in the deformed configuration, the deformation of the cylinder is defined by 
 
𝐺𝐺 = 𝐺𝐺(𝑅𝑅),    𝜃𝜃 = Θ,    𝑧𝑧 = 𝜆𝜆𝑧𝑧𝑍𝑍,                                                                                                (30) 
 
where 𝐺𝐺(𝑅𝑅) is a function of 𝑅𝑅 only and 𝜆𝜆𝑧𝑧 is the uniform axial stretch. 
Using Eqs. (2) and (30), the deformation gradient 𝑭𝑭 is 
𝑭𝑭 = 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎 𝐺𝐺 = 𝜕𝜕𝑟𝑟

𝜕𝜕𝑅𝑅
𝑒𝑒𝑟𝑟⨂𝐸𝐸�⃗ 𝑅𝑅 + 𝑟𝑟

𝑅𝑅
𝑒𝑒𝜃𝜃⨂𝐸𝐸�⃗ Θ + 𝜕𝜕𝑧𝑧

𝜕𝜕𝑍𝑍
𝑒𝑒𝑧𝑧⨂𝐸𝐸�⃗ 𝑍𝑍, 

 
𝑭𝑭 = 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎 𝐺𝐺 = 𝜕𝜕𝑟𝑟

𝜕𝜕𝑅𝑅
𝑒𝑒𝑟𝑟⨂𝐸𝐸�⃗ 𝑅𝑅 + 𝑟𝑟

𝑅𝑅
𝑒𝑒𝜃𝜃⨂𝐸𝐸�⃗ Θ + 𝜆𝜆𝑧𝑧𝑒𝑒𝑧𝑧⨂𝐸𝐸�⃗ 𝑍𝑍,                                                                 (31) 

 
where 𝑒𝑒𝑟𝑟 , 𝑒𝑒𝜃𝜃, 𝑒𝑒𝑧𝑧 and 𝐸𝐸�⃗ 𝑅𝑅 ,𝐸𝐸�⃗ Θ,𝐸𝐸�⃗ 𝑍𝑍  are the orthonormal basis vectors in Ω and Ω0 respectively. 
Using Eqs. (3), (4) and (31) gives 
 
(𝑼𝑼)𝑖𝑖𝑖𝑖 = (𝑭𝑭)𝑖𝑖𝑖𝑖  𝑎𝑎𝑛𝑛𝑎𝑎 (𝑶𝑶𝐷𝐷)𝑖𝑖𝑖𝑖 = (𝑰𝑰0)𝑖𝑖𝑖𝑖,                                                                                     (32) 
 
where for any second-rank tensor 𝑨𝑨, (𝑨𝑨)𝑖𝑖𝑖𝑖 denotes the components of 𝑨𝑨.  
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Solution of magnetostatic field equations   
Let the axis of the solid cylinder of radius 𝐴𝐴 and constant conductivity 𝜎𝜎 be taken along the 𝑍𝑍 axis 
and let 𝐽𝐽𝐿𝐿 = 𝐽𝐽𝐿𝐿𝐸𝐸�⃗ 𝑍𝑍be the uniform axial current density along the axis of the cylinder, where 𝐽𝐽𝐿𝐿 is the 
magnitude of 𝐽𝐽𝐿𝐿 and 𝐸𝐸�⃗ 𝑍𝑍 is the unit vector along the axis of the cylinder. 
For this problem, Eq. (15) is satisfied for uniform 𝐽𝐽𝐿𝐿. The solution of Eq. 14(b) is obtained by 
introducing a uniquely defined vector (magnetic vector potential) �⃗�𝐺𝐿𝐿 such that 
 
𝐵𝐵�⃗ 𝐿𝐿 = 𝐶𝐶𝑐𝑐𝐺𝐺𝑐𝑐 �⃗�𝐺𝐿𝐿 , 𝐷𝐷𝑑𝑑𝑑𝑑 �⃗�𝐺𝐿𝐿 = 0.                                                                                                 (33) 
 
Using Eq. 33(b) and 𝐵𝐵�⃗ 𝐿𝐿 = µ𝐻𝐻��⃗ 𝐿𝐿 in Eq. 14(a) gives 
 

𝐶𝐶𝑐𝑐𝐺𝐺𝑐𝑐 �𝐶𝐶𝑐𝑐𝐺𝐺𝑐𝑐 �⃗�𝐺𝐿𝐿� = �4𝜋𝜋µ𝐽𝐽𝐿𝐿𝐸𝐸�⃗ 𝑍𝑍, 𝑅𝑅 ≤ 𝐴𝐴
0�⃗ , 𝑅𝑅 > 𝐴𝐴

.                                                                                (34) 

 
The form of Eq. (34) suggests that �⃗�𝐺𝐿𝐿 = 𝐺𝐺(𝑅𝑅,Θ,𝑍𝑍)𝐸𝐸�⃗ 𝑍𝑍 where 𝐺𝐺(𝑅𝑅,Θ,𝑍𝑍) is a function of cylindrical 
coordinates 𝑅𝑅, Θ 𝑎𝑎𝑛𝑛𝑎𝑎 𝑍𝑍. Meanwhile Eq. 33(b) shows that G is independent of 𝑍𝑍 and by symmetry, 
𝐺𝐺 is independent of Θ, thus, �⃗�𝐺𝐿𝐿 = 𝐺𝐺(𝑅𝑅)𝐸𝐸�⃗ 𝑍𝑍 is a function of 𝑅𝑅 only [15].  
 
The resolute of �𝐶𝐶𝑐𝑐𝐺𝐺𝑐𝑐 �⃗�𝐺𝐿𝐿� and 𝐶𝐶𝑐𝑐𝐺𝐺𝑐𝑐 �𝐶𝐶𝑐𝑐𝐺𝐺𝑐𝑐 �⃗�𝐺𝐿𝐿� are 
 

�
𝐶𝐶𝑐𝑐𝐺𝐺𝑐𝑐 �⃗�𝐺𝐿𝐿 = �0,−𝑑𝑑𝑑𝑑(𝑅𝑅)

𝑑𝑑𝑅𝑅
, 0�

𝐶𝐶𝑐𝑐𝐺𝐺𝑐𝑐 �𝐶𝐶𝑐𝑐𝐺𝐺𝑐𝑐 �⃗�𝐺𝐿𝐿� = �0, 0,− 1
𝑅𝑅
𝑑𝑑
𝑑𝑑𝑅𝑅
�𝑅𝑅 𝑑𝑑𝑑𝑑(𝑅𝑅)

𝑑𝑑𝑅𝑅
��

.                                                                      (35) 

 
Substituting Eq. 35(b) into Eq. (34) gives 
 

�
1
𝑅𝑅

𝑑𝑑
𝑑𝑑𝑅𝑅
�𝑅𝑅 𝑑𝑑𝑑𝑑(𝑅𝑅)

𝑑𝑑𝑅𝑅
�+ 4𝜋𝜋µ𝐽𝐽𝐿𝐿 , 𝑅𝑅 ≤ 𝐴𝐴

1
𝑅𝑅

𝑑𝑑
𝑑𝑑𝑅𝑅
�𝑅𝑅 𝑑𝑑𝑑𝑑(𝑅𝑅)

𝑑𝑑𝑅𝑅
� = 0, 𝑅𝑅 > 𝐴𝐴

.                                                                                        (36) 

 
The solution of Eq. (36) yields 

𝐺𝐺(𝑅𝑅) = �𝐶𝐶1 ln𝑅𝑅 + 𝐶𝐶2 − 𝜋𝜋µ𝐽𝐽𝐿𝐿𝑅𝑅2, 𝑅𝑅 ≤ 𝐴𝐴
𝐶𝐶3 ln𝑅𝑅 + 𝐶𝐶4, 𝑅𝑅 > 𝐴𝐴,                                                                           (37) 

 
where 𝐶𝐶𝑖𝑖 , 𝑑𝑑 = 1,2,3,4 are constants to be determined. 
Since 𝐺𝐺(𝑅𝑅) must be finite along the axis of the tube (𝑅𝑅 = 0), 𝐶𝐶1 = 0. Thus, 
 

𝐺𝐺(𝑅𝑅) = �𝐶𝐶2 − 𝜋𝜋µ𝐽𝐽𝐿𝐿𝑅𝑅2, 𝑅𝑅 ≤ 𝐴𝐴
𝐶𝐶3 ln𝑅𝑅 + 𝐶𝐶4, 𝑅𝑅 > 𝐴𝐴.                                                                                           (38) 

 
The constant 𝐶𝐶3 is obtained by using the Maxwell's first circuital relation 
 
∫𝐻𝐻��⃗ ∙ 𝑎𝑎𝑠𝑠 = 4𝜋𝜋𝜋𝜋 ⟹ 1

𝜇𝜇𝐿𝐿
∫ − 𝑑𝑑𝑑𝑑(𝑅𝑅)

𝑑𝑑𝑅𝑅
𝑅𝑅𝑎𝑎Θ = 4𝜋𝜋𝜋𝜋2𝜋𝜋

0 ,                                                                  (39) 
 
where 𝜋𝜋 is the current flowing in the tube. Hence, 
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𝐶𝐶3 = −2𝜋𝜋µ𝐽𝐽𝐿𝐿𝐴𝐴2.                                                                                                                  (40) 
 
Substituting Eq. (40) into Eq. (38) gives 
 

𝐺𝐺(𝑅𝑅) = � 𝐶𝐶2 − 𝜋𝜋µ𝐽𝐽𝐿𝐿𝑅𝑅2, 𝑅𝑅 ≤ 𝐴𝐴
−2𝜋𝜋µ𝐽𝐽𝐿𝐿𝐴𝐴2 ln𝑅𝑅 + 𝐶𝐶4, 𝑅𝑅 > 𝐴𝐴

.                                                                              (41) 

 
Recall that the magnetic vector potential is continuous at the surface of seperation, thus, 
 
𝐶𝐶2 − 𝜋𝜋µ𝐽𝐽𝐿𝐿𝐴𝐴2 = −2𝜋𝜋µ𝐽𝐽𝐿𝐿𝐴𝐴2 ln𝐴𝐴 + 𝐶𝐶4.                                                                              (42) 
 
and setting 𝐶𝐶4 = 0 (without loss of generality) gives 
 
𝐶𝐶2 = 𝜋𝜋µ𝐽𝐽𝐿𝐿𝐴𝐴2 − 2𝜋𝜋µ𝐽𝐽𝐿𝐿𝐴𝐴2 ln𝐴𝐴.                                                                                         (43) 
 
Substituting Eq. (43) into Eq. (41) gives the solution 
 

𝐺𝐺(𝑅𝑅) = �𝜋𝜋µ𝐽𝐽𝐿𝐿
(𝐴𝐴2 − 𝑅𝑅2) − 2𝜋𝜋µ𝐽𝐽𝐿𝐿𝐴𝐴2 ln𝐴𝐴 , 𝑅𝑅 ≤ 𝐴𝐴

−2𝜋𝜋µ𝐽𝐽𝐿𝐿𝐴𝐴2 ln𝑅𝑅 , 𝑅𝑅 > 𝐴𝐴
.                                                         (44) 

 
In view of Eqs. 33(a) and 35(a), the magnetic induction 𝐵𝐵�⃗ 𝐿𝐿 = �0,−𝑑𝑑𝑑𝑑(𝑅𝑅)

𝑑𝑑𝑅𝑅
, 0� = (0,𝐵𝐵Θ, 0) has non-

varnishing azimuthal resolute [15] 
 

𝐵𝐵Θ = −𝑑𝑑𝑑𝑑(𝑅𝑅)
𝑑𝑑𝑅𝑅

= �
2𝜋𝜋µ𝐽𝐽𝐿𝐿𝑅𝑅, 𝑅𝑅 ≤ 𝐴𝐴
2𝜋𝜋µ𝐽𝐽𝐿𝐿𝐴𝐴2

𝑅𝑅
, 𝑅𝑅 > 𝐴𝐴.                                                                                    (45) 

 
Using Eqs. (28), (31), (32) and (45), the corresponding magnetic field strength 𝐻𝐻��⃗ 𝐿𝐿 = (0,𝐻𝐻Θ, 0) 
within the tube has non-varnishing azimuthal component 𝐻𝐻Θ 
 
𝐻𝐻Θ = 1

µ
𝑟𝑟(𝑅𝑅)
𝑅𝑅
𝐵𝐵Θ = 2𝜋𝜋𝐽𝐽𝐿𝐿𝐺𝐺(𝑅𝑅),                                                                                               (46) 

 
where 𝐺𝐺(𝑅𝑅) is a function of 𝑅𝑅 only. 
Solution of equilibrium equation 
Using Eqs. (31), (32) and 45(a) in Eq. (27) gives the non-zero components 𝑃𝑃𝑅𝑅𝑅𝑅 ,𝑃𝑃ΘΘ,𝑃𝑃𝑍𝑍𝑍𝑍 of the 
first Piola-Kirchhoff's stress tensor 𝑷𝑷: 
 
𝑃𝑃𝑅𝑅𝑅𝑅 = 2𝜇𝜇𝑒𝑒 �

𝑑𝑑𝑟𝑟
𝑑𝑑𝑅𝑅
− 1� + 𝜆𝜆𝑒𝑒 �

𝑑𝑑𝑟𝑟
𝑑𝑑𝑅𝑅

+ 𝑟𝑟
𝑅𝑅

+ 𝜆𝜆𝑧𝑧 − 3�,                                                                      (47) 
 
𝑃𝑃ΘΘ = 2𝜇𝜇𝑒𝑒 �

𝑟𝑟
𝑅𝑅
− 1� + 𝜆𝜆𝑒𝑒 �

𝑑𝑑𝑟𝑟
𝑑𝑑𝑅𝑅

+ 𝑟𝑟
𝑅𝑅

+ 𝜆𝜆𝑧𝑧 − 3� + 2µ(𝜋𝜋𝐽𝐽𝐿𝐿𝑅𝑅)2,                                                  (48) 
 
𝑃𝑃𝑍𝑍𝑍𝑍 = 2𝜇𝜇𝑒𝑒(𝜆𝜆𝑧𝑧 − 1) + 𝜆𝜆𝑒𝑒 �

𝑑𝑑𝑟𝑟
𝑑𝑑𝑅𝑅

+ 𝑟𝑟
𝑅𝑅

+ 𝜆𝜆𝑧𝑧 − 3�.                                                                         (49) 
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Using Eqs.(47)-(49), the equilibrium equation in Eq. (19) reduces to 
 
𝑑𝑑𝑃𝑃𝑅𝑅𝑅𝑅
𝑑𝑑𝑅𝑅

+ 1
𝑅𝑅

(𝑃𝑃𝑅𝑅𝑅𝑅 − 𝑃𝑃ΘΘ) = 0.                                                                                                     (50) 
 
Substituting Eqs. (47)-(48) into Eq. (50) gives 
 
�𝑑𝑑

2𝑟𝑟
𝑑𝑑𝑅𝑅2

+ 1
𝑅𝑅
𝑑𝑑𝑟𝑟
𝑑𝑑𝑅𝑅
− 𝑟𝑟

𝑅𝑅2
� + �2µ𝜋𝜋

2𝐽𝐽𝐿𝐿
2

2𝜇𝜇𝑒𝑒+𝜆𝜆𝑒𝑒
� 𝑅𝑅 = 0.                                                                                    (51) 

 
The solution of Eq. (51) gives the deformation function 
 
𝐺𝐺(𝑅𝑅) = 𝐶𝐶5𝑅𝑅 + 𝐶𝐶6

𝑅𝑅
+ 𝜛𝜛𝐽𝐽𝑅𝑅3,                                                                                                       (52) 

 
where 𝐶𝐶5, 𝐶𝐶6 are constants and the scalar 𝜛𝜛𝐽𝐽 = 1

4
� µ𝜋𝜋2𝐽𝐽𝐿𝐿

2

2𝜇𝜇𝑒𝑒+𝜆𝜆𝑒𝑒
� depends on the axial current density. 

The displacement field u(R) at points within the tube is defined by 
 
𝑐𝑐(𝑅𝑅) = 𝐺𝐺(𝑅𝑅)− 𝑅𝑅 = 𝐶𝐶5∗𝑅𝑅 + 𝐶𝐶6

𝑅𝑅
+ 𝜛𝜛𝐽𝐽𝑅𝑅3,                                                                                (53) 

 
where the constant 𝐶𝐶5∗ = 𝐶𝐶5 − 1. 
Since the displacement u(R) must be finite at 𝑅𝑅 = 0, then 𝐶𝐶6 = 0. Furthermore, using the condition 
𝑃𝑃𝑅𝑅𝑅𝑅 = 0 at the tube surface 𝑅𝑅 = 𝐴𝐴yields 
𝐶𝐶5∗ = �3𝜇𝜇𝑒𝑒+2𝜆𝜆𝑒𝑒

𝜇𝜇𝑒𝑒+𝜆𝜆𝑒𝑒
�𝜛𝜛𝐽𝐽𝐴𝐴2 − � 𝜆𝜆𝑒𝑒

2(𝜇𝜇𝑒𝑒+𝜆𝜆𝑒𝑒)
� (𝜆𝜆𝑧𝑧 − 1),                                                                            

where 𝜆𝜆𝑧𝑧 is the uniform axial stretch. 
Thus, the displacement 𝑐𝑐(𝑅𝑅) at point within the tube 
 
𝑐𝑐(𝑅𝑅) = 𝜛𝜛𝐽𝐽𝑅𝑅3 + �3𝜇𝜇𝑒𝑒+2𝜆𝜆𝑒𝑒

𝜇𝜇𝑒𝑒+𝜆𝜆𝑒𝑒
�𝜛𝜛𝐽𝐽𝐴𝐴2𝑅𝑅 − � 𝜆𝜆𝑒𝑒

2(𝜇𝜇𝑒𝑒+𝜆𝜆𝑒𝑒)
� (𝜆𝜆𝑧𝑧 − 1)𝑅𝑅.                                                  (54) 

 
Using Eqs. (46), (54) and knowing that 𝐺𝐺(𝑅𝑅) = 𝑐𝑐(𝑅𝑅) + 𝑅𝑅, the magnetic field strength 𝐻𝐻Θ at points 
within the tube is 
𝐻𝐻Θ = 2𝜋𝜋𝐽𝐽𝐿𝐿 �𝜛𝜛𝐽𝐽𝑅𝑅3 + �3𝜇𝜇𝑒𝑒+2𝜆𝜆𝑒𝑒

𝜇𝜇𝑒𝑒+𝜆𝜆𝑒𝑒
�𝜛𝜛𝐽𝐽𝐴𝐴2𝑅𝑅 − � 𝜆𝜆𝑒𝑒

2(𝜇𝜇𝑒𝑒+𝜆𝜆𝑒𝑒)
� (𝜆𝜆𝑧𝑧 − 1)𝑅𝑅 + 𝑅𝑅�.                                 (55) 

 
In the absence of current density 𝐽𝐽𝐿𝐿 (i.e. 𝐽𝐽𝐿𝐿 = 0), the displacement function u(R) and magnetic field 
function 𝐻𝐻Θ in Eqs. (54) and (55) reduce/degenerate to 
 
𝑐𝑐(𝑅𝑅) = � 𝜆𝜆𝑒𝑒

2(𝜇𝜇𝑒𝑒+𝜆𝜆𝑒𝑒)
� (1 − 𝜆𝜆𝑧𝑧)𝑅𝑅, 𝐻𝐻Θ = 0,                                                                               (56)     

                                                      
respectively. 
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Fig. 1: This plot shows that the effect of steady current density on the magnitude of displacement 

function at point within solid cylinder is significantly pronounced. 
 
 

 
Fig. 2: This plot shows that the azimuthal magnetic induction produced by the steady current 

within the solid cylinder increases linearly along the radius of the cylinder. 
Conclusion 
The study develops a new magnetoelastic constitutive theory for modelling magneto-mechanical 
interaction of solids. The theory is specialized for application to the problem of radial deformation 
of a solid circular cylindrical made of conductive semilinear magnetohyperelastic materials. It is 
obtained that the stress propagation in the solid cylinder is sensitive to the magnetic induction 
produced by uniform axial current density while the associated magnetic field is deformation-
dependent. Furthermore, it is shown that the effect of uniform axial current density on the 
deformation of the tube is significantly pronounced.  Finally, the results in this study find 
applications in design of soft actuators, sensors and energy harvesters to mention a few. 
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