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Abstract. Thin-walled mechanical components, such as beams, plates and shells, are widely used 
as structural components in several engineering fields, in particular mechanical, aeronautical and 
aerospace sectors. The purpose of this work is to analyse the cross-ply bending behaviour of 
cylindrical and spherical shell structures using the finite element method. Hence, numerical 
models, realized using commercial software, were realized using the shell and solid approaches 
and were compared with numerical and analytical methods to appreciate their advantages. In this 
research, a Navier solution in close form for high-order theories, developed using the Carrera 
Unified Formulation (CUF) approach, has been reported, where the high-order elastic shell model 
has been developed using the variational principle of virtual work for three-dimensional linear 
theory equations and the analytical results were obtained using the Mathematica software.  The 
results furnished by the numerical method such as the elasticity solutions given in the literature 
using Navier’s method are used as a benchmark for comparing the finite element method results 
in terms of maximum displacement and stress distribution along the principal structure direction. 
However, the numerical shell model cannot provide sufficient data to describe the tensional and 
deformational state at all points and especially along the laminate thickness. Wishing to obtain a 
complete description of the plate's mechanical behaviour, it is necessary to use a three-dimensional 
approach with the associated increase in calculation time. In contrast, the numerical solution based 
on the CUF approach shows a very efficient description of the composite structure behaviour and 
its use should be preferred to the classical lamination approach if an accurate description of the 
structure is necessary. 
Introduction 
Layered structures are being employed more and more in automotive, aerospace and naval 
vehicles. Throughout the latter half of the 20th century, composite materials were developed and 
adopted in areas where a high stiffness-to-weight ratio was required. There are modern examples 
of aircraft for military and civil uses as well as boats, helicopters, ultralights and gliders, whose 
structure is made exclusively of composite material. Layered structures choice, noticeably, 
complicates the design, analysis, and manufacturing processes. All these aspects adding to the 
difficulties already known regarding the use of conventional isotropic materials. Moreover, the 
high discontinuity in the mechanical properties of layered structures, due to their nature, requires 
the ZZ (zig zag) theory for the description of stress and displacement along thickness as well as 
interlaminar continuity (in-plane and out-of-plane stresses) [1][2] that greatly complicate the 
analysis of such structures. Analytical closed-form solutions are only available for extremely 
simple geometries. The resolution of more complex layered structures geometry and/or boundary 
conditions is left to numerical methods with different approximation values. Many authors 
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proposed different numerical technique in order to evaluate the deformation and the stress 
distribution in every point of the structure. Noor and Raig [3] proposed a 3D finite difference 
technique for axial symmetric multilayer structure. Malik and Liew [4][5] proposed a differential 
quadrature technique for complex structure. A meshless collocation method, set on radial basis 
function, have been adopted by Ferreira et al [6][7] to analyse laminated plates and shells. For a 
comprehensive overview of different computational methods and their uses related to layered 
structure can be found in [8][9][10]. A particular focus should be posed on the finite element 
method (FEM) that is widely adopted to study the mechanical behaviour of the composite 
structure. Moreover, different finite element methods are based on axiomatic-type theories where 
the unknown variables are suggested along the thickness. In particular, the earliest FEM 
calculation are based on the classical Kirchhoff-Love theory [11][12][13][14][15]. However, it 
was challenging to meet the compatibility requirements in thin shell analysis because rotations 
were derived from transversal displacement, and to avoid this issue, plate/shell elements based on 
the first-order shear deformation theory (FSDT) were developed by several authors [16][17][18]. 
Severe stiffening limits for thin plate are showed by newest FSDT finite elements, known as shear 
locking. However, early FSDT-type elements showed severe stiffening in thin plate/shell limits, 
which resulted in a numerical mechanism known as shear or membrane locking. This locking was 
initially countered by implementing numerical tricks, operating on the integration schemes [19], 
but they introduced spurious zero energy modes. A solution to this problem is proposed by Naghdi 
[20], where the shell finite element could counteract the locking problem in its displacement 
formulation. On the other hand, if the element is not of high enough degree and the thickness is 
very small, the numerical solution may exhibit a loss in the rate of convergence due to locking. To 
avoid both the mentioned problem the mixed interpolation of tensorial component approach 
(MITC) can be adopted as treated by several authors [21][22][23][24]. In the past two decades, 
numerous plate and shell finite element approaches have been suggested, using higher-order 
theories (HOT). Kant et al. [25]  introduced HOT- finite elements that necessitate continuity only 
for the unknown variables and not for their derivatives. Otherwise, Polit et al [26]. developed a C1 
six-node triangular finite element using cosine functions to represent transverse shear strains. With 
this approach the continuity of displacement and shear stress was ensure between the interface of 
the layered structure. Tessler [27] has provided a comprehensive analysis of HOT-type theories 
and their suitability for finite element applications. Several other studies have implemented HOTs 
for plates and shells, and additional information can be found in the literature [28]. There have 
been many proposals for finite elements based on zigzag theories, such as Rao and Meyer-Piening 
that suggested using the Reissner mixed variational theorem (RMVT) to develop standard finite 
elements.[29]. Lastly, several authors, including Noor and Burton [30], Reddy [31], and 
Rammerstorfer et al. [32] have proposed finite element implementations of layer-wise theories in 
the framework of axiomatic-type theories. 

A new and improved shell finite element is introduced for the analysis of composite structures 
[33][34], based on Carrera's Unified Formulation (CUF), which was originally developed by 
Carrera for multi-layered structures [35][36]. The new shell finite element includes both equivalent 
single layer (ESL) and layer-wise (LW) theories found in CUF. In this work, several shell-based 
finite element theories were introduced and compared to analyse the mechanical response of 
layered structures with different geometry. Comparisons are made between classical theories such 
as CST and FSDT, analytical type solutions, commercial code and CUF high order approaches. 
Three different geometries were used, such as a plate, a cylindrical section and a cylinder. Finally, 
different thicknesses were evaluated for each geometry to highlight the limits of the various 
theories. 
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Unified form building up of plate theories in terms of a few “fundamental nuclei” with 
variational statements. 
Considering theories that assume displacement and transverse shear and normal stress in the 
axiomatic approach, the displacement or stress fields are postulated in the plate's z-direction. 
Typically, two-dimensional theories are build up following four steps: assigning material behavior 
(e.g. Hooke's Law); suppose a geometrical relation (e.g. strain-displacement relation); postulating 
displacement and/or stress distributions in the thickness of the plate's z-direction by stating to a set 
of base functions; and finally, utilizing an appropriate variational statement (PVD or RMVT) to 
determine governing equations and boundary conditions which are variationally consistent with 
the hypotheses introduced in the first three steps. The aim of this discussion is to explore theories 
within the scope of the PVD and the RMVT.  
Hooke’s law: 
The multilayered plates composed of 𝑁𝑁𝑙𝑙 layers, shown in Figure 1, have a geometry and Cartesian 
coordinate system x, y, z. The laminae are assumed to be homogenous and to be functioning within 
the linear elastic range. Standard form for Hooke's law is applied for the anisotropic k-lamina 
stiffness coefficients. 

 

 
Figure 1 Multi-layered structure 

The Hooke’s Law reads 𝜎𝜎𝑖𝑖 = �̃�𝐶𝑖𝑖𝑖𝑖𝜖𝜖𝑖𝑖 where sub-indices i and j, ranging from 1 to 6, stand for the 
index couples 11, 22, 33, 13, 23 and 12, respectively. The material is supposed to be orthotropic 
as specified by �̃�𝐶14 = �̃�𝐶24 = �̃�𝐶34 = �̃�𝐶64 = �̃�𝐶15 = �̃�𝐶25 = �̃�𝐶35 = �̃�𝐶65 = 0. This implies that 𝜎𝜎𝑘𝑘𝑥𝑥𝑥𝑥 and 
𝜎𝜎𝑘𝑘𝑦𝑦𝑥𝑥 depend only on 𝜖𝜖𝑘𝑘𝑥𝑥𝑥𝑥 and 𝜖𝜖𝑘𝑘𝑦𝑦𝑥𝑥. In matrix form: 
 
𝝈𝝈𝑘𝑘𝑝𝑝H = 𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘 𝝐𝝐𝑝𝑝G𝑘𝑘 + 𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘 𝝐𝝐𝑝𝑝G𝑘𝑘

𝝈𝝈𝑘𝑘𝑝𝑝H = 𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘 𝝐𝝐𝑝𝑝G𝑘𝑘 + 𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘 𝝐𝝐𝑝𝑝G𝑘𝑘
                               (1) 

 
where, 

𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘 = �
�̃�𝐶11𝑘𝑘 �̃�𝐶12𝑘𝑘 �̃�𝐶16𝑘𝑘

�̃�𝐶12𝑘𝑘 �̃�𝐶22𝑘𝑘 �̃�𝐶26𝑘𝑘

�̃�𝐶16𝑘𝑘 �̃�𝐶26𝑘𝑘 �̃�𝐶66𝑘𝑘
� ,𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘 =  𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘

T = �
0 0 �̃�𝐶13𝑘𝑘

0 0 �̃�𝐶23𝑘𝑘

0 0 �̃�𝐶36𝑘𝑘
� ,𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘 = �

�̃�𝐶44𝑘𝑘 �̃�𝐶45𝑘𝑘 0
�̃�𝐶45𝑘𝑘 �̃�𝐶55𝑘𝑘 0
0 0 �̃�𝐶66𝑘𝑘

� 

 
Bold letters represent arrays. The superscript ‘T’ indicates array transposition. The subscripts n 
and p denote transverse (out-of-plane, normal) and in-plane values, respectively. Therefore 

 
𝝈𝝈𝑝𝑝𝑘𝑘 = �𝜎𝜎𝑥𝑥𝑥𝑥𝑘𝑘 ,𝜎𝜎𝑦𝑦𝑦𝑦𝑘𝑘 ,𝜎𝜎𝑥𝑥𝑦𝑦𝑘𝑘 �, 𝝈𝝈𝑝𝑝𝑘𝑘 = �𝜎𝜎𝑥𝑥𝑥𝑥𝑘𝑘 ,𝜎𝜎𝑦𝑦𝑥𝑥𝑘𝑘 ,𝜎𝜎𝑥𝑥𝑥𝑥𝑘𝑘 �  

 
𝝐𝝐𝑝𝑝𝑘𝑘 = �𝜖𝜖𝑥𝑥𝑥𝑥𝑘𝑘 , 𝜖𝜖𝑦𝑦𝑦𝑦𝑘𝑘 , 𝜖𝜖𝑥𝑥𝑦𝑦𝑘𝑘 �, 𝝐𝝐𝑝𝑝𝑘𝑘 = �𝜖𝜖𝑥𝑥𝑥𝑥𝑘𝑘 , 𝜖𝜖𝑦𝑦𝑥𝑥𝑘𝑘 , 𝜖𝜖𝑥𝑥𝑥𝑥𝑘𝑘 �.  
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Subscript ‘H’ denotes stresses assessed by Hooke’s law whereas subscript ‘G’ denotes strain 
from the geometrical relation Eq. (3). 

Eq. (1) is employed together with a regular displacement formulation based on the principles 
of PVD, and the stress-strain relationships are expressed in a blended form for the integrated 
solution procedure: 

 
𝝈𝝈𝑝𝑝H𝑘𝑘 = 𝑪𝑪𝑝𝑝𝑝𝑝𝑘𝑘 𝝐𝝐𝑝𝑝G𝑘𝑘 + 𝑪𝑪𝑝𝑝𝑝𝑝𝑘𝑘 𝝈𝝈𝑝𝑝𝑛𝑛𝑘𝑘

𝝐𝝐𝑝𝑝H𝑘𝑘 = 𝑪𝑪𝑝𝑝𝑝𝑝𝑘𝑘 𝝐𝝐𝑝𝑝G𝑘𝑘 + 𝑪𝑪𝑝𝑝𝑝𝑝𝑘𝑘 𝝈𝝈𝑝𝑝𝑛𝑛𝑘𝑘
                                                   (2) 

 
using both stiffness and compliance coefficients. To link the two expressions of Hooke's law, 

the following can be deduced: 
 

𝑪𝑪𝑝𝑝𝑝𝑝𝑘𝑘 = 𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘 − 𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘 𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘
−1𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘 , 𝑪𝑪𝑝𝑝𝑝𝑝𝑘𝑘 = 𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘 𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘

−1 
𝑪𝑪𝑝𝑝𝑝𝑝𝑘𝑘 = −𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘

−1𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘 , 𝑪𝑪𝑝𝑝𝑝𝑝𝑘𝑘 = 𝑪𝑪�𝑝𝑝𝑝𝑝𝑘𝑘
−1 

 
Superscript ‘-1’ denotes an inversion of the array.  
 

Geometrical relation: 
The strain components 𝝐𝝐𝑝𝑝𝑘𝑘 , 𝝐𝝐𝑝𝑝𝑘𝑘  are linearly related to the displacements 𝒖𝒖𝑘𝑘��𝑢𝑢𝑥𝑥𝑘𝑘,𝑢𝑢𝑦𝑦𝑘𝑘,𝑢𝑢𝑥𝑥𝑘𝑘�� according 
to the following geometrical (subscript G) relations:  

 
𝝐𝝐𝑝𝑝G𝑘𝑘 = 𝐷𝐷𝑝𝑝𝒖𝒖𝑘𝑘,        𝝐𝝐𝑝𝑝G𝑘𝑘 = 𝐷𝐷𝑝𝑝𝒖𝒖𝑘𝑘                 (3) 
 
𝐷𝐷𝑝𝑝 and 𝐷𝐷𝑝𝑝 denotes in-plane and out-of-plane differential operators: 
 

𝐷𝐷𝑝𝑝 = �
𝜕𝜕𝑥𝑥 0 0
0 𝜕𝜕𝑦𝑦 0
𝜕𝜕𝑦𝑦 𝜕𝜕𝑥𝑥 0

� ;       𝐷𝐷𝑝𝑝 = �
𝜕𝜕𝑥𝑥 0 𝜕𝜕𝑥𝑥
0 𝜕𝜕𝑥𝑥 𝜕𝜕𝑦𝑦
0 0 𝜕𝜕𝑥𝑥

�. 

 
Displacement and transverse assumptions: 
 The performance of a displacement and/or strain parameter 𝑓𝑓 are assumed to be in accordance 
with a given expansion in the z-direction of the plate.  

 
𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐹𝐹𝑖𝑖(𝑧𝑧) 𝑓𝑓𝑖𝑖(𝑥𝑥,𝑦𝑦)     𝑖𝑖 = 0,1, . . .  ,𝑁𝑁.               (4) 
 
The sum of the iterative indices 𝑖𝑖 is computed over its domain. The polynomials 𝐹𝐹𝑖𝑖(𝑧𝑧) generate 

a group of individual functions and, this selection can be made arbitrarily. The magnitude of the 
projected expansion is expressed by 𝑁𝑁.  

The use of displacement and transverse normal stress assumptions will result in this equation: 
 
𝒖𝒖(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐹𝐹𝑖𝑖(𝑧𝑧)𝒖𝒖𝑖𝑖(𝑥𝑥,𝑦𝑦)

𝝈𝝈𝑝𝑝𝑛𝑛(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐹𝐹𝑖𝑖(𝑧𝑧)𝝈𝝈𝑝𝑝𝑖𝑖(𝑥𝑥,𝑦𝑦)             𝑖𝑖 = 0,1,𝑁𝑁.                  (5) 

 
M (as in model) has been introduced to separate the stresses assumed from those obtained from 

Hooke's law. In the numerical analysis, 𝑁𝑁 ≤ 4 will be accounted for. 𝑁𝑁 can be unique for each 
variable as discussed in [37]. The conditions in Eq. (5) can be applied to either a single layer (LW) 
or multiple layers (ES). 
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Governing equations via PVD and RMVT: 
For a multilayered plate subjected to static loadings, 
PVD states  
 
∑ ∫ ∫ �𝛿𝛿𝝐𝝐𝑝𝑝G

𝑘𝑘T𝝈𝝈𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 + 𝛿𝛿𝝐𝝐𝑝𝑝G
𝑘𝑘T𝝈𝝈𝑝𝑝𝑝𝑝𝑑𝑑

𝑘𝑘 �𝑉𝑉 
𝐴𝐴𝑘𝑘

Γ𝑘𝑘

Ω𝑘𝑘
𝑁𝑁𝑙𝑙
𝑘𝑘=1   dΩ𝑘𝑘d𝑧𝑧 = 𝛿𝛿𝐿𝐿𝑒𝑒        (6) 

 
δ is the variational symbol. 𝐴𝐴𝑘𝑘 and V denote the layer thickness domain and volume; 𝛺𝛺𝑘𝑘 is the 
layer middle surface bounded by Γ𝑘𝑘. The variation of the internal work has been split into in-plane 
and out-of-plane parts and involves stress from Hooke’s Law and strain from geometrical relations. 
𝛿𝛿𝐿𝐿𝑒𝑒 is the virtual variation of the work made by the external layer-forces 𝒑𝒑𝑘𝑘 = �𝑝𝑝𝑥𝑥𝑘𝑘, 𝑝𝑝𝑦𝑦𝑘𝑘, 𝑝𝑝𝑥𝑥𝑘𝑘�. By 
replacing the variables in Eq.(1), Eq.(3), and the first Eq.(5) with suitable terms, a variational 
statement can be formulated that yields a set of equilibrium equations and boundary conditions. 
These equilibrium equations can be expressed concisely in the form: 

 
𝛿𝛿𝒖𝒖𝜏𝜏𝑘𝑘 ∶  𝑲𝑲𝑝𝑝

𝑘𝑘𝜏𝜏𝑘𝑘 𝒖𝒖𝑘𝑘𝑘𝑘   =  𝒑𝒑𝜏𝜏𝑘𝑘                    (7) 
 
The related boundary conditions are: 
 
𝒖𝒖𝜏𝜏𝑘𝑘  =  𝒖𝒖�𝜏𝜏𝑘𝑘 𝑜𝑜𝑜𝑜 𝜫𝜫𝑝𝑝

𝑘𝑘𝜏𝜏𝑘𝑘𝒖𝒖𝑘𝑘𝑘𝑘  = 𝜫𝜫𝑝𝑝
𝑘𝑘𝜏𝜏𝑘𝑘𝒖𝒖�𝑘𝑘𝑘𝑘        (8) 

 
The number of equations derived is equal to the number of variables introduced: τ and s vary from 
0 to N and k range from 1 to Nl. K and Π are arrays constitute by differential operators. 
Reissner's mixed theorem [38][39] expresses both equilibrium and compatibility in relation to the 
unknowns 𝒖𝒖𝑘𝑘 and  𝝈𝝈𝑝𝑝𝑘𝑘 . This is achieved by means of the variational equation given below: 

 
∑ ∫ ∫ �𝛿𝛿𝝐𝝐𝑝𝑝G

𝑘𝑘T𝝈𝝈𝑝𝑝𝐻𝐻
𝑘𝑘 + 𝛿𝛿𝝐𝝐𝑝𝑝G

𝑘𝑘T𝝈𝝈𝑝𝑝𝑀𝑀
𝑘𝑘  +  𝛿𝛿𝝈𝝈𝑝𝑝𝑀𝑀

𝑘𝑘T �𝝐𝝐𝑝𝑝G
𝑘𝑘 −  𝝐𝝐𝑝𝑝H

𝑘𝑘 ��𝑉𝑉 
𝐴𝐴𝑘𝑘

Γ𝑘𝑘

Ω𝑘𝑘
𝑁𝑁𝑙𝑙
𝑘𝑘=1  dΩ𝑘𝑘d𝑧𝑧 = 𝛿𝛿𝐿𝐿𝑒𝑒  (9) 

   
The LHS incorporates the changes of the internal force within the plate, with the initial two terms 
deriving from the displacement formulation, which lead to a balance of forces. The third term is a 
combined term which ensures the compatibility of the transverse strain components. The whole 
equation, expressed in terms of displacement and stress, is summarized in a concise form as 
follows: 

 
 𝛿𝛿𝒖𝒖𝜏𝜏𝑘𝑘  ∶  𝑲𝑲𝑢𝑢𝑢𝑢

𝑘𝑘𝜏𝜏𝑘𝑘𝒖𝒖𝑘𝑘𝑘𝑘 + 𝑲𝑲𝑢𝑢𝑢𝑢
𝑘𝑘𝜏𝜏𝑘𝑘𝝈𝝈𝑝𝑝𝑘𝑘𝑘𝑘 = 𝒑𝒑𝜏𝜏𝑘𝑘 

   (10)  
 𝛿𝛿𝒖𝒖𝑝𝑝𝜏𝜏𝑘𝑘  ∶  𝑲𝑲𝑢𝑢𝑢𝑢

𝑘𝑘𝜏𝜏𝑘𝑘𝒖𝒖𝑘𝑘𝑘𝑘 + 𝑲𝑲𝑢𝑢𝑢𝑢
𝑘𝑘𝜏𝜏𝑘𝑘𝝈𝝈𝑝𝑝𝑘𝑘𝑘𝑘 = 𝟎𝟎 

 
with boundary conditions 
 
𝒖𝒖𝜏𝜏𝑘𝑘 = 𝒖𝒖�𝜏𝜏𝑘𝑘 𝑜𝑜𝑜𝑜 𝜫𝜫𝑢𝑢

𝑘𝑘𝜏𝜏𝑘𝑘𝒖𝒖𝑘𝑘𝑘𝑘 + 𝜫𝜫𝑢𝑢
𝑘𝑘𝜏𝜏𝑘𝑘𝝈𝝈𝑝𝑝𝑘𝑘𝑘𝑘 = 𝜫𝜫𝑢𝑢

𝑘𝑘𝜏𝜏𝑘𝑘𝒖𝒖�𝑘𝑘𝑘𝑘 + 𝜫𝜫𝑢𝑢
𝑘𝑘𝜏𝜏𝑘𝑘𝝈𝝈�𝑝𝑝𝑘𝑘𝑘𝑘      (11) 

 
When LW descriptions are used, the equations controlling the behavior of the layers are first 
derived at the individual layer level. The equations for the entire multilayer structure are then 
obtained by assuring the stresses and displacements remain continuous between the layers.  
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Navier-type closed form solution: 
The aforementioned boundary value problems, in the broadest range of configurations and 
constraints, could be solved approximately. When the material displays orthotropic behavior, 
Navier-type analytical solutions can be derived by taking the harmonic forms of the applied loads 
and the unknown variables into account: 
 

�𝑢𝑢𝑥𝑥𝜏𝜏
𝑘𝑘 ,𝜎𝜎𝑥𝑥𝑥𝑥𝜏𝜏

𝑘𝑘 ,𝑝𝑝𝑥𝑥𝜏𝜏
𝑘𝑘 � = ∑ �𝑈𝑈𝑥𝑥𝑘𝑘, 𝑆𝑆𝑥𝑥𝑥𝑥𝜏𝜏

𝑘𝑘 ,𝑃𝑃𝑥𝑥𝜏𝜏
𝑘𝑘 �𝑚𝑚,𝑝𝑝 cos 𝑚𝑚𝑚𝑚𝑥𝑥

𝑎𝑎
sin 𝑝𝑝𝑚𝑚𝑦𝑦

𝑏𝑏

�𝑢𝑢𝑦𝑦𝜏𝜏
𝑘𝑘 ,𝜎𝜎𝑦𝑦𝑥𝑥𝜏𝜏

𝑘𝑘 ,𝑝𝑝𝑦𝑦𝜏𝜏
𝑘𝑘 � = ∑ �𝑈𝑈𝑦𝑦𝑘𝑘, 𝑆𝑆𝑦𝑦𝑥𝑥𝜏𝜏

𝑘𝑘 ,𝑃𝑃𝑦𝑦𝜏𝜏
𝑘𝑘 �𝑚𝑚,𝑝𝑝 sin𝑚𝑚𝑚𝑚𝑥𝑥

𝑎𝑎
cos 𝑝𝑝𝑚𝑚𝑦𝑦

𝑏𝑏

�𝑢𝑢𝑥𝑥𝜏𝜏
𝑘𝑘 ,𝜎𝜎𝑥𝑥𝑥𝑥𝜏𝜏

𝑘𝑘 ,𝑝𝑝𝑥𝑥𝜏𝜏
𝑘𝑘 � = ∑ �𝑈𝑈𝑥𝑥𝑘𝑘, 𝑆𝑆𝑥𝑥𝑥𝑥𝜏𝜏

𝑘𝑘 ,𝑃𝑃𝑥𝑥𝜏𝜏
𝑘𝑘�𝑚𝑚,𝑝𝑝 sin𝑚𝑚𝑚𝑚𝑥𝑥

𝑎𝑎
sin 𝑝𝑝𝑚𝑚𝑦𝑦

𝑏𝑏

                                               (12) 

 
while m and n are the correspondent wave numbers. The maximum amplitudes corresponding to 
the RHS of Eq. (12) are represented by capital letters. This method has been implemented for 
different theories and the outcomes will be covered in the following sections. Any type of imposed 
force can be adjusted to the Navier form unless a suitable Fourier expansion is implemented. The 
benchmarks discussed in the following sections are related to various transverse pressure 
distributions 𝑝𝑝𝑥𝑥𝑧𝑧, and the suitable Fourier expansion for these cases should be written as: 
 

(𝑝𝑝𝑥𝑥𝑧𝑧) = ∑ (𝑝𝑝𝑥𝑥𝑧𝑧𝑚𝑚𝑝𝑝) sin𝑚𝑚𝑚𝑚𝑥𝑥
𝑎𝑎

 sin 𝑝𝑝𝑚𝑚𝑦𝑦
𝑏𝑏

𝑅𝑅,𝑄𝑄
𝑚𝑚,𝑝𝑝        (13) 

 
Where 𝑅𝑅 and 𝑄𝑄 are the maximum values of the considered 𝑚𝑚 and 𝑛𝑛, while 𝑝𝑝𝑥𝑥𝑧𝑧𝑚𝑚𝑝𝑝 are the Fourier 
series coefficients. See Figure 2 

 
Figure 2 Plate geometry and notations 

Numerical results and discussion 
Three different geometrical test cases are introduced in this section: shell plate, shell cylindrical 
section and shell cylinder. For each test case different stacking sequence are analysed. Different 
thicknesses and lamination configurations will be considered for each test case.  
Convergence Analysis  
A preliminary study of convergence mesh is conducted for the commercial code to reduce the 
influence of the mesh on the results. The choice of element size made at this stage will also be 
adopted in the following cases. In Figure 1, the convergence analysis configuration is illustrated, 
where a render shell thickness is adopted to better appreciate the imposed boundary condition. The 
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plate is subjected to a uniform force acting along the z axes in opposite direction, a simply 
supported BC are applied on the four edge of the square plate and a ratio between the edge and the 
thickness equal 4 is considered. 
 
 

 
Figure 3 commercial software mesh convergence configuration 

 
The results of the convergence analysis are shown in Table 1 where the first column reports the 

dimensions of the elements expressed as the ratio of the plate side size to the number of elements, 
the second column reports the displacement along the z-axis with respect to the maximum 
deflection. In accordance with Table 1, the choice of the dimension element equal to 20 was chosen 
to obtain a good mitigation of the effects due to the size of the elements and the computational 
cost. 

 
Table 1 Mesh convergence analysis 

Mesh Convergence 

Dimension Element �𝑎𝑎
𝑛𝑛
� Max Deflection � 𝑧𝑧

𝑧𝑧𝑚𝑚𝑎𝑎𝑥𝑥
� 

3 0.812 
5 0.879 
10 0.976 
20 0.998 
30 0.999 
50 1 

 
Simply supported cross-ply plate under pressure 
The cross ply square base plate is subjected to a pressure with a bi-harmonic distribution expressed 
as a Fourier series with m and n equal to one (Figure 2). To assess the influence of thickness on 
the mechanical response of the structure, three different ratios of side length to thickness are 
considered � 𝑎𝑎

𝑧𝑧ℎ
= 4; 10; 20�, where Th is the plate thickness. 
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Figure 4 Square cross ply plate under biharmonic pressure load 

 
The square cross-plate has simply supported condition on the four edges and a symmetrical 

stacking sequence of [0/90/0], where the mechanical properties adopted for the layered plate are 
expressed in accordance with Table 2.  

 
Table 2 Mechanical Properties of the material 

Material Properties 
Young’s Modulus 𝐸𝐸𝐿𝐿 𝐸𝐸𝑧𝑧⁄  30 

Shear Modulus 𝐺𝐺𝐿𝐿𝑧𝑧 𝐸𝐸𝑧𝑧⁄  0.5 
Shear Modulus 𝐺𝐺𝑧𝑧𝑧𝑧 𝐸𝐸𝑧𝑧⁄  0.35 

Poisson 𝜈𝜈𝐿𝐿𝑧𝑧  0.3 
Poisson 𝜈𝜈𝑧𝑧𝑧𝑧  0.49 

 
The values of transverse displacement, tension in the L, T and LT directions of the central point 
of the plate were dimensionless in accordance with the equations 14a-d   

Table 3 and Table 4 show the results obtained in accordance with Equations 14 a-d and pertain 
respectively the displacement values and the stress values. The values were obtained considering 
different theories. L refers to a Layer-Wise model, ED to an equivalent single layer model, FSDT 
to a first shear deformation theory model, CST to classic laminate theory. Furthermore, for the L 
and ED models, id 1 to 4 refer from linear to fourth order implemented expansions function in the 
plate/layer thickness z-direction [34]. The data on the maximum dimensionless plate displacement 
show that for thick structures values close to the 3D solution [37] are only equated by the Layer-
wise model of order 4 and 3, while the other theories register an error ranging from 82% of the 
CST, to about 7.5 % of the commercial code through to about 27% of the FSDT. Moving from a 
thick to a very thin layered structure, the differences recorded between the various theories are 
greatly reduced, with a maximum variation of around 28% for the CST. The layer-wise approach 

Plate

𝑃𝑃𝑥𝑥 = 𝑃𝑃0 sin
𝜋𝜋𝑥𝑥
𝑎𝑎 sin

𝜋𝜋𝑦𝑦
𝑏

With 𝑃𝑃0=1000 Pa

𝑈𝑈�𝑥𝑥 =
𝑈𝑈𝑥𝑥100𝐸𝐸𝑧𝑧ℎ3

𝑝𝑝𝑥𝑥𝑎𝑎4
; (a) 𝑆𝑆1̅1 =

𝑆𝑆11
𝑝𝑝𝑥𝑥(𝑎𝑎 𝑇𝑇ℎ⁄ )2 ; (b)  

(14) 

𝑆𝑆2̅2 =
𝑆𝑆22

𝑝𝑝𝑥𝑥(𝑎𝑎 𝑇𝑇ℎ⁄ )2 ; (c) 𝑆𝑆1̅2 =
𝑆𝑆12

𝑝𝑝𝑥𝑥(𝑎𝑎 𝑇𝑇ℎ⁄ )2 ; (d)  
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allows exact displacement values to be reproduced even with small expansion orders. The 
commercial code, in the case of thin plate, reduces its error to (in the configuration considered) 
3.5%, representing a viable alternative to the CST, FSDT and ED theories with small expansion 
order values.  

Table 3 Maximum value of displacement in z direction 
 𝑼𝑼�𝒛𝒛 
 4 10 20 

3D 2.820 0.919 0.610 
L4 2.821 0.919 0.609 
L3 2.821 0.919 0.609 
L2 2.798 0.918 0.609 
L1 2.720 0.898 0.604 
ED4 2.625 0.866 0.592 
ED3 2.627 0.866 0.595 
ED2 2.035 0.750 0.565 
ED1 2.051 0.750 0.565 
FSDT 2.051 0.750 0.563 
CST 0.501 0.501 0.439 
ABAQUS 2.611 0.865 0.589 

 
The tension values in the longitudinal, transverse and shear directions are reported in Table 4. The 
values are referred to the midpoint of the plate, and the superscript ‘+’ denotes the tension values 
evaluated on the top of the plate, while the superscript ‘-’ denotes the values obtained on the bottom 
face of the laminate. Similar considerations to those made for displacement can be made in the 
evaluation of stresses. However, the greatest discrepancy in the evaluation of tension occurs in the 
longitudinal direction for the ED1 approach. Again, the values obtained with the commercial code, 
although close to the 3D solution [37], do not reach the degree of accuracy shown by the LW (1-
4) and ED (2,3) approaches. Furthermore, the commercial code reports the same absolute tension 
value for the top and bottom of the laminate, while the other theories manage to record a variation 
in tension as shown by the benchmark. 

 
Table 4 Stress distribution in longitudinal, transversal and shear distribution on the top and 

bottom of the plate 

  

 𝒔𝒔�𝟏𝟏𝟏𝟏+  𝒔𝒔�𝟏𝟏𝟏𝟏+  𝒔𝒔�𝟏𝟏𝟏𝟏+  𝒔𝒔�𝟏𝟏𝟏𝟏−  𝒔𝒔�𝟏𝟏𝟏𝟏−  𝒔𝒔�𝟏𝟏𝟏𝟏−  
 4 10 20 4 10 20 

L4 15.52 1.374 0.4982 -15.02 1.385 0.4930 
L3 15.53 1.373 0.4982 -15.02 1.293 0.4955 
L2 15.33 1.357 0.4982 -14.99 1.293 0.4955 
L1 14.27 1.367 0.4945 -13.86 1.290 0.4954 
ED4 15.39 1.366 0.4977 -15.05 1.307 0.4953 
ED3 15.51 1.360 0.4977 -14.22 1.325 0.4959 
ED2 11.35 1.447 0.4977 -10.80 1.375 0.4956 
ED1 10.98 1.443 0.4840 -12.25 1.385 0.5000 
FSDT 11.17 1.443 0.5000 -12.22 1.402 0.5000 
CST 13.48 1.691 0.500 -12.22 1.402 0.5000 
ABAQUS 14.08 1.298 0.4936 -14.08 1.298 0.4936 
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Shell cylindrical section 
The second benchmark analysed and reported on in this paper is the layered cylindrical section 
shown in Figure 5 A-B. The upper surface of the structure is subjected to a sinusoidal pressure 
distributed according to Figure 5-B, while simply supported conditions are applied along the 
extreme sides parallel to the generators. Both the pressure distribution and the boundary conditions 
are described considering a cylindrical reference system whose origin coincides with the central 
point of the upper surface, and whose three axes coincide with the direction of the generatrix 
(longitudinal direction), directrix (transverse direction) and normal to the surface, respectively (as 
shown in Figure 5-A), respectively.  

To mitigate edge effects, a section length equal to four times the radius was considered. 
 

 
Figure 5 Cylinder shell section 

 
The axisymmetric geometry shown in this section and studied in [33] is a cylindrical section 

consisting of three layers of orthotropic material with equal thickness. The cylindrical section was 
analysed considering four different thicknesses, where the configurations due to thickness 
variation will be identified through the parameter a, which expresses the ratio of the cylinder radius 
to the thickness of the laminate, the values being equal to 𝑎𝑎 =  𝑅𝑅

𝑧𝑧ℎ
= 2; 4; 50; 500.  

According with [33] the stacking sequence for the cylinder section is equal to [0/90/0], while 
the mechanical properties of the material and some geometrical data are given in Table 5.  
 

Table 5 Mechanical Properties 

Material and Geometrical Properties 
Young’s Modulus 𝐸𝐸𝐿𝐿 𝐸𝐸𝑧𝑧⁄  25 

Shear Modulus 𝐺𝐺𝐿𝐿𝑧𝑧 𝐸𝐸𝑧𝑧⁄  0.5 
Shear Modulus 𝐺𝐺𝑧𝑧𝑧𝑧 𝐸𝐸𝑧𝑧⁄  0.2 
Poisson’s ratio 𝜈𝜈𝐿𝐿𝑧𝑧 𝜈𝜈𝑧𝑧𝑧𝑧⁄  0.25 

Radius R 10 
Angle span α 𝜋𝜋 3⁄  

 
The results shown in Table 4 refer to the radial displacement of the cylinder section evaluated 

at the origin of the cylindrical reference system. The results were obtained in accordance with 
Equation 14-a by evaluating the same theories discussed in the previous section. For very high 
thickness values, in contrast to the square plate, the variations with respect to the 3D solution are 
remarkably small. The ED1-4 solution underestimates the maximum value of the deflection just 
as it does for the CST theory, for some configurations of the LW theory and for the first shear 
order deformation theory. In contrast, approaching the problem with commercial software even in 
a small way returns a higher deflection value than the exact solution. The decrease in thickness 

𝑃𝑃𝑥𝑥 = 𝑃𝑃0 sin
𝑛𝑛𝜋𝜋𝜉𝜉2
𝑏

α

90° 0°

90°

𝜉𝜉1

𝜉𝜉3

𝜉𝜉2
0°

A) B)
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greatly mitigates the simplifications in dowry of the various theories used for this study. For very 
thin structures even the CST theory, which usually significantly underestimates the deflection 
values, provides results in line with the 3D solution. 

 
Table 6 Maximum value of displacement in z direction. Section cylinder 

 𝑼𝑼�𝒛𝒛 
 2 4 50 500 

3D 1.436 0.457 0.0808 0.773 
L4 1.435 0.4581 0.08083 0.07767 
L3 1.459 0.4614 0.08084 0.07767 
L2 1.411 0.4576 0.08083 0.07767 
L1 1.363 0.4407 0.08067 0.07764 

ED4 1.383 0.4284 0.08051 0.07767 
ED3 1.369 0.4272 0.08051 0.07767 
ED2 1.111 0.3310 0.07982 0.07766 
ED1 1.129 0.3324 0.07982 0.07766 

FSDT 1.169 0.3329 0.07976 0.07766 
CST 0.09625 0.08712 0.07834 0.07766 

ABAQUS 1.4852 0.4561 0.08015 0.07739 

Cylinder 
The last test case discussed in this article consists of a cylinder made of composite material with a 
constant cross-section whose geometrical characteristics are shown in Figure 7 Each layer of the 
cylinder made of square symmetric unidirectional orthotropic fibrous material and the adopted 
properties are reported in Table 5. The results, applied load and boundary conditions were imposed 
in accordance with a cylindrical reference system whose axes coincide with the radial, tangential 
and axial direction of the cylinder (axial direction coincides with the longitudinal axis of the fibre 
for ply oriented at 0°) 

 
Figure 6 Geometrical description of cylinder case 

The geometric variations in terms of thickness investigated are the same as reported in the 
previous section. In addition, two different stacking sequences are investigated, and for each of the 
two configurations 4 variations in thickness were analysed. For the [0/90] case, the first ply, 
oriented along the axis of the cylinder is positioned in the inner layer of the cylinder. A harmonic 
pressure is applied to the inner face of the cylinder, where the distribution is described by Equation 
15, and the parameters m and n are respectively equal to1 and 8.  
 

𝜉𝜉1

𝜉𝜉2

𝜉𝜉3

D
=

20

𝑏 = 2𝜋𝜋𝑅𝑅
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𝑃𝑃𝑥𝑥 = 𝑃𝑃0 sin �𝑚𝑚𝑚𝑚𝜉𝜉1
𝐿𝐿
� sin �𝑝𝑝𝑚𝑚𝜉𝜉2

𝑏𝑏
�                                                                       (15) 

The pressure distribution and boundary conditions are illustrated in Figure 8. In detail, the 
boundary conditions are of the simply supported type in accordance with the reference system 
previously illustrated and applied to the extreme edges of the cylinder. 

 
Figure 7 Applied boundary conditions. 

Firstly, the results for the [90/0] stacking sequence are discussed and then the three plies 
configuration outcomes will be introduced. The values of maximum displacement are shown in  
Table 7, and evaluated following the equation 13-A, where the z direction is the radial direction of 
the cylinder or in a simpler way the 𝜉𝜉3 of Figure 7. For the [0/90] plies configuration angle, Abaqus 
commits an error in the evaluation of the maximum displacement value, in the case of thick 
structures (a=2), of approximately 22.5% by overestimating the value obtained from the 3D 
solution. Of the used theories, the one underlying the commercial software is the only one that 
overestimates the value of the deflection so markedly. Except for the LD4 configuration, all other 
theories underestimate the exact value with more or less marked errors.   

By reducing the thickness by a factor of two, the percentage errors committed by the various 
considered theories become significantly lower (except for CST). In addition, for a thickness value 
identified by a=4 configuration, the values given in the table are always lower than the exact value 
except for the L4 configuration, which tends to overestimate the exact solution, albeit with an error 
of about 1%.By increasing the term a (decreasing the value of the thickness), the structural 
response in terms of maximum deflection is at the exact value for all theories, with the exception 
of the value obtained with the Abaqus software, which again tends to overestimate the exact value 
and records the value that deviates the most from that reported in [33]. 

 
Table 7 Cylinder axial displacement 

 𝑼𝑼�𝒛𝒛 
 2 4 50 500 

3D 14.034 6.100 2.242 0.1005 
L4 14.33 6.164 2.242 0.1007 
L2 13.80 5.921 2.241 0.1007 

ED4 14.08 6.075 2.242 0.1007 
ED2 13.07 5.717 2.240 0.1007 

FSDT 12.41 5.578 2.240 0.1007 
CST 2.781 2.802 2.227 0.1007 

ABAQUS 17.197 5.944 2.234 0.1011 

Pz
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The values of the stresses in the L (Longitudinal) and LT directions are shown in Table 7. For 
each theory, the first line shows the stress value obtained on the external surface while the second 
line shows the stress values evaluated on the internal surface. Comparing the results obtained from 
the theories considered, for both directions 11 and 12, with the 3D reference values shows a marked 
underestimation for both classical theories and the Abaqus model for thick structures. The decrease 
in thickness induces a progressive reduction in the error. In fact, for very thin structures, the stress 
values tend to the correct value regardless of the theory considered. This case study, unlike the 
previous cases, shows a less pronounced variation of results in the case of thick structures. 
 

Table 8 Stresses value for direction L and LT 
 𝑺𝑺𝟏𝟏𝟏𝟏 𝑺𝑺𝟏𝟏𝟏𝟏 
 2 4 50 500 2 4 50 500 

3D -2.660 -0.9610 1.610 0.9436 -0.5016 -0.2812 -0.3449 -0.1045 
 0.2511 0.2120 0.2189 0.0449 0.2685 0.2007 -0.0784 -0.0925 

L4 -2.678 -0.9557 1.606 0.9484 -0.4910 -0.2859 -0.3606 -0.1099 
 0.2578 0.2210 0.2241 0.04536 0.3067 0.2216 -0.08282 -0.09736 

L2 -2.610 -0.9386 1.605 0.9484 -0.4631 -0.2732 -0.3603 -0.1099 
 0.19686 0.1732 0.2204 0.04534 0.2861 0.2103 -0.08276 -0.09736 

ED4 -2.649 -0.9580 1.605 0.9486 -0.4812 -0.2831 -0.3605 -0.1099 
 0.2302 0.2181 0.2216 0.04516 0.3032 0.2199 -0.08280 -0.09736 

ED2 -2.172 -0.8725 1.606 0.9483 -0.3677 -0.2521 -0.3602 -0.1099 
 0.1049 0.1156 0.2226 0.04567 0.2541 0.2025 -0.08275 -0.09736 

FSDT -1.216 -0.6911 1.603 0.9484 -0.2994 -0.2431 -0.3604 -0.1099 
 0.2256 0.2018 0.2236 0.04535 0.2532 0.1946 -0.08313 -0.09736 

CST -0.5690 -0.4752 1.594 0.9484 -0.1534 -0.1761 -0.3588 -0.1099 
 0.1464 0.1661 0.2230 0.04535 0.1504 0.1516 -0.08235 -0.09736 

ABAQUS -1.6875 -0.79688 1.6076 0.9432 0.3153 0.2338 -0.3442 -0.1045 
 0.3120 0.23544 0.20310 0.04508 0.2945 -0.2015 0.1567 -0.0926 

 
Furthermore, with the classical CST theories, FSDT and commercial codes such as Abaqus, it 

is not possible to evaluate stresses in the 33 direction (radial direction) and 23 directions. Using 
high order theories allows both the layer-wise approach and the equivalent single layer approach 
to evaluate the stress distribution in the 23 and 33 directions, thus obtaining more accurate 
numerical models. 
 

Table 9  Stresses value for 23 and 33 directions on cylinder case. 
 𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 
 2 4 50 500 2 4 50 500 

3D -2.931 -4.440 -4.785 -0.227 -0.31 -0.7 -6.29 -3.09 

L4 -3.216 -4.791 -5.024 -0.2441 -0.3408 -0.7358 -6.549 -3.082 

ED4 -2.928 -4.274 -3.395 0.2764 -0.3358 -0.7126 -5.072 4.793 

 
For the cylinder case, as previously introduced at the beginning of this section, two different 

stacking sequences were considered. For the case [0/90], the results have already been discussed, 
while the results for the stacking configuration of [0/90/0] will now be introduced. Results from 
previous case studies show that the best results for high order theories are provided by the layer-
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wise and equivalent single layer approach. Noting this aspect, to make the results clearer and to 
highlight the discrepancies in the values obtained from the exact solution [9] and finite element 
approach with the code introduced in [33] and Abaqus code, the comparisons was only made 
between 3D, L4, ED4 and Abaqus.  

 
Table 10 Radial displacement for [0/90/0] cylinder configuration 

 𝑼𝑼�𝒛𝒛 
 2 4 50 500 

3D 10.1 4.009 0.5495 0.1027 

L4 10.1 4.032 0.5495 0.1027 

ED4 9.1582 3.7197 0.5458 0.1027 

ABAQUS 19.045 5.2111 0.5538 0.1031 

 
Table 9 shows the values of the radial displacements calculated according to the kk formula. 

The results again show that for thick structures, the approach using commercial software, in this 
case, Abaqus, yields a value of approximately twice the reference value. Higher-order theories, 
albeit with different approaches, provide values very similar to the 3D solution. By moving from 
thicker to thinner structures, it is possible to obtain a maximum cylinder deflection that tends very 
closely to the 3D solution. Obviously, high order theories can perfectly reproduce the maximum 
radial displacement value for the cylinder. 
 

Table 11 Stresses in direction 11 and 12 for [0/90/0] cylinder test case 
 𝑺𝑺𝟏𝟏𝟏𝟏 𝑺𝑺𝟏𝟏𝟏𝟏 
 2 4 50 500 2 4 50 500 

3D -0.8428 -0.2701 -0.0225 0.0379 -0.2922 -0.1609 -0.0760 -0.0889 
 0.1761 0.1270 0.0712 0.0559 0.1797 0.1081 -0.0181 -0.0766 

L4 -0.8604 -0.2733 -0.0241 0.0377 -0.2918 -0.1642 -0.0795 -0.0935 
 0.1841 0.1330 0.0734 0.0565 0.2015 0.1175 -0.0124 -0.0806 

ED4 -0.9447 -0.3011 -0.0240 0.0381 -0.2770 -0.1568 -0.0791 -0.0935 
 0.1433 0.1167 0.0730 0.0568 0.1957 0.1127 -0.0123 -0.0806 

ABAQUS -0.21450 -0.1117 -0.02136 0.03793 -0.2883 -0.1504 -0.0755 -0.0887 
 0.14583 0.07656 0.07152 0.05604 0.2094 0.0968 -0.0352 -0.0769 

 
Table 10 shows the values of the stresses evaluated in direction 11 and direction 12. Unlike the 

radial displacement trend, in the case of thick structures the use of high order theories with a layer-
wise approach can provide values close to the reference solution. In fact, using an equivalent 
single-layer approach commits a percentage error of approximately 10%. Finally, using the 
commercial Abaqus code commits a percentage error of around 75%. The percentage errors 
evaluated above refer to the s11 tension case and evaluating the maximum error percentages, i.e. 
not taking into account whether the maximum tension error is evaluated on the outer or inner 
surface of the cylinder. Moreover, in Table 10, the values of the voltages in the direction 12 are 
given in the section of the table. A trend of the values of the voltages is noticed like that described 
by the direction 11 even if with different percentage variations. 

Finally, the results of the stresses in Directions 23 and 33 are given in Table 12. It is important 
to note that in the table the corresponding values for the commercial software Abaqus are not 
reported, this is due to the impossibility of the commercial code to provide a stress state in all 
directions, with the use of shell elements (S4). Instead, high order theories allow us to obtain the 
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stresses in the considered directions and in the radial direction (thickness direction) comparable 
with the 3D reference values. In detail, once again the layer-wise approach makes it possible to 
correctly assess the stress state both for thick structures and for structures with low thickness. 
While the equivalent single layer approach provides approximate values like the reference values 
for thick structures, it tends to underestimate the value of tension in the case of thin structures. 

 
Table 12 Stresses in direction 11 and 12 for [0/90/0] cylinder test case 

 𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 
 2 4 50 500 2 4 50 500 

3D -1.379 -2.349 -3.491 -0.691 -0.34 -0.62 -4.85 -9.12 

L4 -1.442 -2.464 -3.659 -0.7287 -0.343 -0.627 -5.026 -9.468 

ED4 -1.280 -2.025 -2.613 -0.5195 -0.358 -0.684 -5.184 -12.26 

 
Conclusion 
In this paper, different static shell and plate finite element analyses based on the CUF formulation 
were presented. The analysis involved three different benchmarks with three different geometries 
of different complexity. Different theories were compared to evaluate the performance of the shell 
elements considering the classical theories and the refined ones (high order) [33-36], in addition 
to the comparison was introduced a model made with the commercial software Abaqus. The results 
were provided for different thickness values (from extremely thick structures to extremely thin 
structures) in terms of displacement, tension in the plane and out of the plane where it could be 
evaluated. In accordance with what has been shown, shell elements based on the unified 
formulation of Carrera both with layer-wise approach and with equivalent single layer approach 
are not subject to shear locking phenomena, even for extremely thin structures. Also, for any 
thickness value. Obviously for excessively thick structures can be used a shell modelling provided 
that the expansion orders of the functions of the displacement in the direction of the thickness are 
increased. However, the use of classical theories such as CST and FSDT can only be used with 
very thin layered structures. On the other hand, commercial software can provide acceptable results 
for relatively thin structures while for thick structures, although it can provide results affected by 
a minor error compared to the solutions obtained by classical theories, are however not acceptable 
because suffering from an error too high. In addition, layer-wise models work better than 
equivalent single layer models, which in turn provide more accurate results when compared to 
business codes. To conclude the use of LW models is required for both thick and thin shells if the 
distribution of transverse tresses in the thickness is to be correctly described and the interlaminar 
continuity requirements are to be met. Neglecting that the high order models manage to provide a 
situation of tensions both in the plan and out of the plan unlike the commercial codes that neglect 
the trend of tensions outside the plan, providing therefore an approximate resolution of the 
analysed problem. 
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