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Abstract. The problem of rapid explosion of a spherical cavity in an infinite elastic media of 
Achenbach and Sun, Israilov and Hamidou is revisited in this study under central symmetric 
considerations. The governing partial differential equation is reformulated as a differential-
difference equation, with compatibility conditions for the unknown cavity’s radial evolution, with 
the unknown displacement being the exponential generating function of a formal radial Laurent 
series. It is shown that for cavity explosion at constant speed, the modified problem admits self-
similar displacement profiles of the inverse hyperbolic type for conjugate decreasing cavity 
pressures inversely proportional to the time. 
Introduction 
This short paper provides an effective exact method of lines for the dynamic response of a rapidly 
expanding surface in an infinite elastic space consisting of a linear homogeneous and isotropic 
Hookean material. The mechanical problem is that of the determination of the deformation ensuing 
exterior to a rapidly expanding spherical cavity in an infinite elastic media. The transition into 
anelastic constituent properties is excluded from this consideration, and only infinitesimal strain 
is assumed in the media which is also assumed homogeneous. 

Moreover, the mathematical problem is that of the simultaneous determination of the 
displacement field in the region exterior to that cavity and the dynamics of the exploding (or 
rapidly evolving) surface in the time. Further simplifying assumptions are that the process is 
isothermal and the central symmetry is invoked within a spherical polar system of coordinates. 
More precisely, the constitutive relation of the material is given by 

tr( ) 2 ,σ λ ε µε= +  I  

where σ  is the Cauchy stress tensor; ε  is the linearized Green-St.Venant strain tensor; I  is the 
unit second rank tensor; and ,λ µ  are the Lame viscosity constants. It should be emphasized also 
that the strain considered here is infinitesimal. 

Given the more recent interesting consideration by Israilov and Hamidou [1] in which a 
thorough review of the earlier work by Achenbach and Sun [2] is presented, we have decided to 
give yet a different view of the same problem by using a method of lines and thereby obtaining 
exact explicit solutions for a rapidly exploding surface moving at constant speed. It should be 
noted that in the exposition herein, the initial displacement is taken as non-zero and radially 
dependent, no a priori assumption of the nature of the evolution of the surface, and neither is the 
shape of the pressure in the cavity aforehand specified, the intent being for the compatible trio of 
displacement, surface evolution, and cavity pressure to naturally present itself through the 
analytical manipulations. 

This study is by no means exhaustive, and has the limitations of being able to address only a 
class of aforestated compatible trio, but it has the strength of being able to give explicit solutions 
which offer the utility of being a benchmark for numerical and analytical solutions for problems 
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of this class. Specifically, the problem in context is governed by the following partial differential 
equation, and attendant initial and boundary conditions: 
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where ( , )u r t  is the radial displacement field in time t ; 2c λ µ
ρ
+

= ; ν  the Poisson ratio of the 

body; and ( )tP  is time-dependent pressure in the cavity ( )r s t< .  

 
Despite the innocuous outlook of the problem, it is observed that there are inherent 

nonlinearities in the formulation of the problem, essentially being the moving surface ( )r s t= . 
The current literature is replete with techniques for handling formulations of this kind, and it should 
be noted that in spite, problems of this class do not readily yield themselves to exact solutions.  
Differential-Difference Reformulation 
Motivated by the solution of the quasistatic state equation 1(2)  

 1
22

( )( , ) ( )c tu r t c t r
r

= +  (3) 

we assume the displacement evolution of the elastic media in the region ( )r s t>  which is ahead 
of the rapidly expanding surface in the form of a spatial Laurent series 
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where :t ct= . By elementary calculations, we have the representations 
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From Eq. (5)  it is further observed that ( )j tM  verifies the differential-difference equation 
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with the boundary condition of the problem suggesting the shape of ( )jM t  in the form 
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 1( ) ( ) ( ),j
j t t s t+∝M P  (7) 

while, defining 0 : (0)s s= , the zero initial conditions enforce the following constraints 
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Solution to differential-difference equation 
Assuming that 1( ) ( ) ( )j

j jt t s t m+=M P , jm  a yet-to-be-determined sequence, the constraints in Eq.

2(6)  imply that 
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from which it is observed that for non-vanishing 0m  and 1m , the admissible surface evolution 
pattern and the relation 
  
 1

0( ) ; ( ) ( ),s t t s t s tτ β −= + =P  (10) 

β ∈  obtains.  

 

Correspondingly, Eq. 1(6)  yields the following equations 
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Resulting from the relation 
.. .

( ) ( ) 2 ( ) ( ) 0t s t t s t+ =P P , Eq. 2(11)  in turn yields 
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Finally, upon a reflection of Eq. (10)  on Eq. (12) , the governing equation for the sequence 

{ }
0jm
∞

 is obtained as 
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which has the solution  
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with 0m , 1m  and τ  being undetermined constants. 

 
Convergence analysis 
From difference equation (13) , one can make some a priori convergence analysis of series (4) . 
Firstly, it is observed that for 3j ≥ , 
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from which it is further inferred that    
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By the ratio test, the region of convergence of series (4)  is that which is determined, per the time 
t , by the limiting inequality 
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which, by Eq. (17) , is 1| | ( )r s tτ −> .  

Explicit Solutions 
In this section, we shall exploit the derived solution of the differential-difference equation, up to 
arbitrary constants, to explicitly determine the displacement evolution in the region exterior to the 
rapidly expanding surface. 

The displacement of the spherical body ahead of the rapidly expanding surface, therefore, has 
an evolution of the form 
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Converting the temporal variable back to t  gives the solution as 
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Initial conditions 

Firstly, we take into account the zero initial speed condition ( ,0) 0u r
t

∂
=

∂
 for Eq. (20)  to realize 

that 0 0m =  simultaneously with the compatibility condition  
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Set 
0

: 1r
s

α = > . One observes that the relationship between the dimensionless parameters α  and 

τ  through the transcendental equation (21)  is approximately 
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This further constrains τ  in the interval (0, )∞  given the positivity ofα . Noting the range of 
admissibility ofτ , Fig.1 below gives a graphical relationship between α  andτ . Secondly, an 

application of the initial displacement condition ( ,0)u r rω=  reveals that 1 2
2sm ω
βτ
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Fig.1: Relationship between dimensionless parameters τ  andα . 

 
 
Now the displacement reads 
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Boundary condition 
The boundary condition at the rapidly evolving surface supplies information for the determination 
of the parameterτ :      

 ( )2 3
2
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( 1)1 ( 2) ArcCoth( ) (2 1) 0.
2s c
ν βν τ τ τ ν τ

ρω
−

+ − + + − =  (24) 

Due to the branch cut discontinuity of the ArcCoth  function, and in order to maintain the 
meaningfulness of Eq. (24) ,τ  is only admissible in the interval (1,1.996784) .  

Finally, the triple of equations (23) , (24)  and compatibility condition (21)  constitute the 
solution to the explosion problem in the region 0( ) .r s t ct sτ> = +   
 
Numerical Illustration 
For illustration purposes, we consider an isotropic linear elastic infinite media with Poisson ratio

0.3ν = , 3
2

λ µ= , 0.2µ = , 0 5s = , 1β = , 1500ρ = , all in appropriate units. In this instance, it is 

calculated from the above relations that 0.354452ω β= − , and 1.5τ =  approximately. The 
resulting displacement field, spherical surface evolution, and pressure within the cavity are given 
by  
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Fig. 2: Illustrative displacement field evolution in the region ahead of a rapidly expanding 

spherical cavity as given by Eq. (25)  

The rapidly evolving surface and the ensuing compaction are demonstrated in the contour plot 
given in Fig.2 above. It can be deduced from Fig.2 that the spherical cavity's surface evolves 
linearly in the time, while lesser absolute values of the displacement ( , )u r t  as progression is made 
into the far field, per time, depict decreasing compression. 
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