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Abstract. For the static bending analysis of sandwich spherical shells, higher-order closed-form 
solutions are provided in the current study based on a new hyperbolic shell theory considering the 
effects of transverse normal strain. A shell consists of three layers wherein the top and the bottom 
layers (face sheets) are made up of hard material and the middle layer (core) is made up of soft 
material. The governing equations and associated boundary conditions of the theory are produced 
by employing the principle of virtual work. Semi-analytical closed-form solutions for the static 
problem are produced by the Navier technique for simply supported boundary conditions of the 
shell. The present results are compared with results that have already been published in order to 
confirm the accuracy and efficacy of the current higher-order hyperbolic shell theory. 
Introduction 
Fiber-reinforced polymer composites are the most important kind of composite material. The most 
significant characteristics of fiber-reinforced polymer composite materials are their high strength-
to-weight and stiffness-to-weight properties. Consequently, these are being employed more 
frequently in a variety of technical applications. Lightweight composite panels called laminated 
sandwich shells have a soft inner core between two thin, stronger skins. Its function is to transfer 
loads from the face sheets to the core structure, and if it fails, the structure will no longer function. 
Inflicted stresses on sandwich structures are distributed between the face sheets and the core 
structure according to their material properties and thicknesses. Sandwich panels are frequently 
utilized in a variety of engineering fields, including civil, mechanical, aerospace, marine, and 
offshore. Mourtiz et al. [1] described composite shell structures are widely used in different 
engineering sectors for many years, including the naval, aerospace, automotive, and construction 
sectors, as well as sporting goods, medical devices, and many other areas. Mallikarjuna and Kant 
[2] provided a critical review and some results of recently developed refined theories of fiber-
reinforced laminated composites and sandwiches and this review is limited to linear free vibration 
and transient dynamic analyses, and geometric nonlinear transient response of multilayer 
sandwich/fiber-reinforced composite plates. Ferreira et al. [3] presented Non-linear analysis of 
sandwich shells and the effect of core plasticity using first order shear deformation theory based 
on the finite element method and uses the Ahmad shell element with five degrees of freedom per 
node. Kant and Swaminathan [4] presented analytical solutions for the static analysis of laminated 
sandwich plates using higher order refined theory based on Navier’s solution technique. The 
theoretical model presented by the author incorporates laminate deformations which account for 
the effects of transverse shear deformation. Hohe and Librescu [5] presented a nonlinear theory 
for doubly curved anisotropic sandwich shells with transversely compressible core using an 
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advanced geometrically nonlinear shell theory of doubly curved structural sandwich panels with 
transversely compressible core is presented based on Kirchhoff theory. This theory accounts for 
dynamic effects as well as for initial geometric imperfections.  Zhong and Reimerdes [6] presented 
stability behavior of cylindrical and conical sandwich shells with flexible core using a higher-order 
theory based on three-layer model and solved by numerical integration. Khare et al. [7] presented 
solutions for thick laminated sandwich shells using higher order theory based on closed form 
solutions. Closed-form formulations of 2D higher-order shear deformation theory are presented 
for the thermo-mechanical and free vibration analysis of simply supported, cross-ply, laminated 
sandwich, doubly thick curved shells. Results on static and dynamic problems of double core 
sandwich shell are not presented in the paper. Garg et al. [8] presented Solutions for free vibration 
of laminated composite and sandwich shells using higher-order closed-form. It described free 
vibration characteristics of simply supported, laminated cross-ply, composite, and sandwich shell 
panels using the various higher-order theories, which account for the effects of transverse shear 
strains/stresses and the transverse normal strain/stress. Results on a multilayered sandwich shell 
analysis are not presented by the authors. Turkin [9] presented a technique for calculating rational 
design parameters of a sandwich shell with account of thermal loading using nonlinear theory of 
thin elastic shells.   
Objective of the Present Study 
Based on the aforementioned literature review, it is found that the literature on the mechanics of 
sandwich shells considering the effects of transverse normal strain is limited. Hence, the objective 
of the present study is to carry out static bending analysis of laminated sandwich shells using a 
new hyperbolic shell theory. A semi-analytical solution for the static problem is obtained using 
the Navier method. 
Kinematic formulation 
Fig. 1 shows a differential shell element considered in the (x, y, z) coordinate system. The x and y 
curves depicted here are lines of substantial curvature on the mid-plane of the laminate. The 
downward z-direction is seen to be positive. R1 and R2, respectively, stand for the primary radii of 
curvature of the mid-plane along the x and y axes. Layers of orthotropic composite material that 
are thought to be suitably linked together make up a laminate. On the top surface of a laminate, 
that is, z = -h/2, a transverse load of q (x, y) is applied. 
Following is the displacement field assumed for the current hyperbolic shell theory. 
𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �1 + 𝑧𝑧

𝑅𝑅1
� 𝑢𝑢0(𝑥𝑥,𝑦𝑦) − 𝑧𝑧 𝜕𝜕𝑤𝑤0

𝜕𝜕𝜕𝜕
+ 𝑓𝑓(𝑧𝑧)𝜃𝜃𝑥𝑥(𝑥𝑥,𝑦𝑦)

𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �1 + 𝑧𝑧
𝑅𝑅2
� 𝑣𝑣0(𝑥𝑥,𝑦𝑦) − 𝑧𝑧 𝜕𝜕𝑤𝑤0

𝜕𝜕𝜕𝜕
+ 𝑓𝑓(𝑧𝑧)𝜃𝜃𝑦𝑦(𝑥𝑥,𝑦𝑦)

𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑤𝑤0(𝑥𝑥, 𝑦𝑦) + 𝑓𝑓′(𝑧𝑧)𝜃𝜃𝑧𝑧(𝑥𝑥,𝑦𝑦)

                               (1) 

 
Fig. 1 Geometry and coordinates of sandwich shell under consideration 
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where, u, v, w are the displacements in x, y, z directions respectively; 𝜃𝜃𝑥𝑥,𝜃𝜃𝑦𝑦, 𝜃𝜃𝑧𝑧 are the shear slopes 
in x, y and z direction respectively; u0, v0, w0 are the mid-plane displacements in x, y, z direction 
respectively. Using the linear theory of elasticity, the normal and shear strains associated with the 
displacement field can be calculated as follows:  
𝜀𝜀𝑥𝑥 = �𝜕𝜕𝑢𝑢0

𝜕𝜕𝜕𝜕
+ 𝑤𝑤0

𝑅𝑅1
� − 𝑧𝑧 𝜕𝜕

2𝑤𝑤0
𝜕𝜕𝑥𝑥2

+ 𝑓𝑓(𝑧𝑧) 𝜕𝜕𝜃𝜃𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑓𝑓′(𝑧𝑧)
𝑅𝑅1

𝜃𝜃𝑧𝑧

𝜀𝜀𝑦𝑦 = �𝜕𝜕𝑣𝑣0
𝜕𝜕𝜕𝜕

+ 𝑤𝑤0
𝑅𝑅2
� − 𝑧𝑧 𝜕𝜕

2𝑤𝑤0
𝜕𝜕𝑦𝑦2

+ 𝑓𝑓(𝑧𝑧) 𝜕𝜕𝜃𝜃𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝑓𝑓′(𝑧𝑧)
𝑅𝑅2

𝜃𝜃𝑧𝑧
𝜀𝜀𝑧𝑧 = 𝑓𝑓″(𝑧𝑧)𝜃𝜃𝑧𝑧

𝛾𝛾𝑥𝑥𝑥𝑥 = �𝜕𝜕𝑢𝑢0
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣0
𝜕𝜕𝜕𝜕
� − 2𝑧𝑧 𝜕𝜕

2𝑤𝑤0
𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕

+ 𝑓𝑓(𝑧𝑧) �𝜕𝜕𝜃𝜃𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜃𝜃𝑦𝑦
𝜕𝜕𝜕𝜕
�

𝛾𝛾𝑥𝑥𝑥𝑥 = 𝑓𝑓′(𝑧𝑧)𝜃𝜃𝑥𝑥 + 𝑓𝑓′(𝑧𝑧) 𝜕𝜕𝜃𝜃𝑥𝑥
𝜕𝜕𝜕𝜕

𝛾𝛾𝑦𝑦𝑦𝑦 = 𝑓𝑓′(𝑧𝑧)𝜃𝜃𝑦𝑦 + 𝑓𝑓′(𝑧𝑧) 𝜕𝜕𝜃𝜃𝑧𝑧
𝜕𝜕𝜕𝜕

                                                                  (2) 

where 
𝑓𝑓(𝑧𝑧) = �𝑧𝑧cosh �𝜉𝜉

2
�� − ��ℎ

𝜉𝜉
� sinh �𝜉𝜉𝜉𝜉

ℎ
�� ,

𝑓𝑓′(𝑧𝑧) = �cosh �𝜉𝜉
2
�� − �cosh �𝜉𝜉𝜉𝜉

ℎ
��where 𝜉𝜉 = 2.634.

                                                                     (3) 

Stresses are calculated using the Hooke’s law from the 3D elasticity problem for cross-ply 
laminated shells. 
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⎨
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⎧
𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
𝜎𝜎𝑧𝑧
𝜏𝜏𝑥𝑥𝑥𝑥
𝜏𝜏𝑥𝑥𝑥𝑥
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𝑄𝑄11 𝑄𝑄12 𝑄𝑄13 0 0 0
𝑄𝑄12 𝑄𝑄22 𝑄𝑄23 0 0 0
𝑄𝑄13 𝑄𝑄23 𝑄𝑄33 0 0 0

0 0 0 𝑄𝑄66 0 0
0 0 0 0 𝑄𝑄55 0
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𝛾𝛾𝑥𝑥𝑥𝑥
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𝛾𝛾𝑦𝑦𝑦𝑦⎭
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⎬

⎪
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𝑘𝑘

                                                                (4) 

where �𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦 ,𝜎𝜎𝑧𝑧 , 𝜏𝜏𝑥𝑥𝑥𝑥 , 𝜏𝜏𝑥𝑥𝑥𝑥 , 𝜏𝜏𝑦𝑦𝑦𝑦�are the normal and shear stresses, and �𝜀𝜀𝑥𝑥, 𝜀𝜀𝑦𝑦, 𝜀𝜀𝑧𝑧, 𝛾𝛾𝑥𝑥𝑥𝑥 , 𝛾𝛾𝑦𝑦𝑦𝑦 , 𝛾𝛾𝑥𝑥𝑥𝑥� are the 
normal and shear strains. (Q11,  Q12, Q13, Q22, Q23, Q33, Q44, Q55, Q66)𝑘𝑘are the reduced stiffness 
coefficients.  
 
𝑄𝑄11 = 𝐸𝐸1(1−𝜇𝜇23𝜇𝜇32)

∆
;𝑄𝑄12 = 𝐸𝐸1(𝜇𝜇21+𝜇𝜇31𝜇𝜇23)

∆
;𝑄𝑄13 = 𝐸𝐸1(𝜇𝜇31+𝜇𝜇21𝜇𝜇32)

∆
;

𝑄𝑄22 = 𝐸𝐸2(1−𝜇𝜇13𝜇𝜇31)
∆

;𝑄𝑄23 = 𝐸𝐸2(𝜇𝜇32+𝜇𝜇12𝜇𝜇31)
∆

;𝑄𝑄33 = 𝐸𝐸3(1−𝜇𝜇12𝜇𝜇21)
∆

;
𝑄𝑄44 = 𝐺𝐺23;𝑄𝑄55 = 𝐺𝐺13;𝑄𝑄66 = 𝐺𝐺12; 

∆= 1 − 𝜇𝜇12𝜇𝜇21 − 𝜇𝜇23𝜇𝜇32 − 𝜇𝜇13𝜇𝜇31 − 2𝜇𝜇21𝜇𝜇32𝜇𝜇13
                                                 (5)

 

Principle of Virtual Work 

� � � �𝜎𝜎𝑥𝑥𝛿𝛿𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦𝛿𝛿𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑧𝑧𝛿𝛿𝜎𝜎𝑧𝑧 + 𝜏𝜏𝑥𝑥𝑥𝑥𝛿𝛿𝜏𝜏𝑥𝑥𝑥𝑥 + 𝜏𝜏𝑥𝑥𝑥𝑥𝛿𝛿𝜏𝜏𝑥𝑥𝑥𝑥 + 𝜏𝜏𝑦𝑦𝑦𝑦𝛿𝛿𝜏𝜏𝑦𝑦𝑦𝑦�
ℎ 2⁄

−ℎ 2⁄

𝑏𝑏

0

𝑎𝑎

0

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

� � ∫ 𝑞𝑞(𝑥𝑥,𝑦𝑦) ℎ 2⁄
−ℎ 2⁄

𝑏𝑏

0

𝑎𝑎

0

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
                                                                                                         (6)

 

The virtual work principle can be used to generate the six variationally-consistent governing 
equations and boundary conditions. The resulting governing equations can be visualized as the 
following in terms of stress resultants. 
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𝛿𝛿𝑢𝑢0: 𝜕𝜕𝑁𝑁𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑁𝑁𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

= 0

𝛿𝛿𝑣𝑣0: 𝜕𝜕𝑁𝑁𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑁𝑁𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

= 0

𝛿𝛿𝑤𝑤0: 𝜕𝜕
2𝑀𝑀𝑥𝑥𝑥𝑥

𝑏𝑏

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2𝑀𝑀𝑦𝑦𝑦𝑦

𝑏𝑏

𝜕𝜕𝑦𝑦2
+ 2 𝜕𝜕2𝑀𝑀𝑥𝑥𝑥𝑥

𝑏𝑏

𝜕𝜕𝜕𝜕  𝜕𝜕𝜕𝜕
− 𝑁𝑁𝑥𝑥𝑥𝑥

𝑅𝑅1
− 𝑁𝑁𝑦𝑦𝑦𝑦

𝑅𝑅2
+ 𝑞𝑞 = 0

𝛿𝛿𝜃𝜃𝑥𝑥:  𝜕𝜕𝑀𝑀𝑦𝑦𝑦𝑦
𝑆𝑆

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑀𝑀𝑥𝑥𝑥𝑥

𝑆𝑆

𝜕𝜕𝜕𝜕
− 𝑄𝑄𝑥𝑥𝑥𝑥𝑆𝑆 = 0

𝛿𝛿𝜃𝜃𝑦𝑦:: 
𝜕𝜕𝑀𝑀𝑦𝑦𝑦𝑦

𝑆𝑆

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑀𝑀𝑥𝑥𝑥𝑥

𝑆𝑆

𝜕𝜕𝜕𝜕
− 𝑄𝑄𝑦𝑦𝑦𝑦𝑆𝑆 = 0

𝛿𝛿𝜃𝜃𝑧𝑧:  𝜕𝜕𝑄𝑄𝑥𝑥𝑥𝑥
𝑆𝑆

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑄𝑄𝑦𝑦𝑦𝑦𝑆𝑆

𝜕𝜕𝜕𝜕
− 𝑉𝑉𝑥𝑥𝑥𝑥𝑆𝑆

𝑅𝑅1
− 𝑉𝑉𝑦𝑦𝑦𝑦𝑆𝑆

𝑅𝑅2
− 𝑉𝑉𝑧𝑧𝑧𝑧𝑆𝑆 = 0

                                                                        (7) 

where 

�𝑁𝑁𝑥𝑥𝑥𝑥, 𝑁𝑁𝑦𝑦𝑦𝑦, 𝑁𝑁𝑠𝑠𝑥𝑥𝑥𝑥,𝑀𝑀𝑥𝑥𝑥𝑥
𝑏𝑏 ,  𝑀𝑀𝑦𝑦𝑦𝑦

𝑏𝑏 , 𝑀𝑀𝑥𝑥𝑥𝑥
𝑏𝑏 � = � �𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦, 𝜏𝜏𝑥𝑥𝑥𝑥, 𝑧𝑧𝜎𝜎𝑥𝑥,  𝑧𝑧𝜎𝜎𝑦𝑦, 𝑧𝑧𝜏𝜏𝑥𝑥𝑥𝑥�

ℎ
2�

−ℎ
2�

 𝑑𝑑𝑑𝑑

�𝑀𝑀𝑥𝑥𝑥𝑥
𝑆𝑆 , 𝑀𝑀𝑦𝑦𝑦𝑦

𝑆𝑆 ,𝑀𝑀𝑥𝑥𝑥𝑥
𝑆𝑆 � = � ��𝑓𝑓(𝑧𝑧)�𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦, 𝜏𝜏𝑥𝑥𝑥𝑥���

ℎ
2�

−ℎ
2�

 𝑑𝑑𝑑𝑑

�𝑄𝑄𝑥𝑥𝑥𝑥𝑆𝑆 , 𝑄𝑄𝑦𝑦𝑦𝑦𝑆𝑆 � = � � �𝑓𝑓′(𝑧𝑧)�𝜏𝜏𝑥𝑥𝑥𝑥, 𝜏𝜏𝑦𝑦𝑦𝑦���
ℎ
2�

−ℎ
2�

 𝑑𝑑𝑑𝑑

�𝑉𝑉𝑥𝑥𝑥𝑥𝑆𝑆 ,𝑉𝑉𝑦𝑦𝑦𝑦𝑆𝑆 � = � � �𝑓𝑓′(𝑧𝑧)(𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦)��
ℎ
2�

−ℎ
2�

 𝑑𝑑𝑑𝑑

(𝑉𝑉𝑧𝑧𝑧𝑧𝑆𝑆) = ∫ {[𝑓𝑓″(𝑧𝑧)]𝜎𝜎𝑧𝑧  }
ℎ
2�

−ℎ
2�

 𝑑𝑑𝑑𝑑

                                       (8) 

Closed-Form Solution  
The following solution form is assumed for the unknown variables in accordance with Navier's 
solution process, and it precisely satisfies the boundary conditions that are easily supported. 
(𝑢𝑢0,  𝜃𝜃𝑥𝑥) = (𝑢𝑢𝑚𝑚𝑚𝑚, 𝜃𝜃𝑥𝑥𝑥𝑥𝑥𝑥)cos𝛼𝛼𝛼𝛼  sin𝛽𝛽𝛽𝛽
�𝑣𝑣0,  𝜃𝜃𝑦𝑦� = �𝑣𝑣𝑚𝑚𝑚𝑚, 𝜃𝜃𝑦𝑦𝑦𝑦𝑦𝑦 �sin𝛼𝛼𝛼𝛼  cos𝛽𝛽𝛽𝛽
(𝑤𝑤0,  𝜃𝜃𝑧𝑧) = (𝑤𝑤𝑚𝑚𝑚𝑚, 𝜃𝜃𝑧𝑧𝑧𝑧𝑧𝑧)sin𝛼𝛼𝛼𝛼  sin𝛽𝛽𝛽𝛽

                                                                                                (9) 

where, 𝑢𝑢𝑚𝑚𝑚𝑚, 𝜃𝜃𝑥𝑥𝑥𝑥𝑥𝑥, 𝑣𝑣𝑚𝑚𝑚𝑚, 𝜃𝜃𝑦𝑦𝑦𝑦𝑦𝑦,𝑤𝑤𝑚𝑚𝑚𝑚, 𝜃𝜃𝑧𝑧𝑧𝑧𝑧𝑧are the unknown coefficients. The expression for the 
transverse sinusoidal load is expressed as,  
 
𝑞𝑞(𝑥𝑥,𝑦𝑦) = 𝑞𝑞0sin𝛼𝛼𝛼𝛼sin𝛽𝛽𝛽𝛽                                          ==                                                              (10) 
 
where 𝛼𝛼 = 𝜋𝜋/𝑎𝑎,  𝛽𝛽 = 𝜋𝜋/𝑏𝑏, and q0 is the maximum intensity of the sinusoidal load. Substituting 
Eqs. (9) – (10) into Eq. (7) and the resultant equations are expressed in matrix form as,  
 
[𝐾𝐾]{𝛥𝛥} = {𝑓𝑓}                                                                                                                              (11) 
 
where[𝐾𝐾], {𝑓𝑓} and {𝛥𝛥} represent the stiffness matrix, force vector and the vector of unknowns. The 
elements of these matrices are as follows. 
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𝐾𝐾11 = −𝐴𝐴11𝛼𝛼2 − 𝐴𝐴66𝛽𝛽2,      𝐾𝐾12 = 𝐾𝐾21 = −𝐴𝐴12𝛼𝛼𝛼𝛼 − 𝐴𝐴66𝛼𝛼𝛼𝛼,
𝐾𝐾13 = 𝐾𝐾31 = 𝐴𝐴11

𝑅𝑅1
𝛼𝛼 + 𝐴𝐴12

𝑅𝑅2
𝛼𝛼 + 𝐵𝐵11𝛼𝛼3 + 𝐵𝐵12𝛼𝛼𝛽𝛽2 + 2𝐵𝐵66𝛼𝛼𝛽𝛽2,

𝐾𝐾14 = 𝐾𝐾41 = −𝐶𝐶11𝛼𝛼2 − 𝐶𝐶66𝛽𝛽2,   𝐾𝐾15 = 𝐾𝐾51 = −𝐶𝐶12𝛼𝛼𝛼𝛼 − 𝐶𝐶66𝛼𝛼𝛼𝛼,
𝐾𝐾16 = 𝐾𝐾61 = �𝐹𝐹11

𝑅𝑅1
𝛼𝛼 + 𝐹𝐹12

𝑅𝑅2
𝛼𝛼 + 𝐷𝐷13𝛼𝛼� ,  𝐾𝐾22 = −𝐴𝐴22𝛽𝛽2 − 𝐴𝐴66𝛼𝛼2,

𝐾𝐾23 = 𝐾𝐾32 = 𝐵𝐵22𝛽𝛽3 + [𝐵𝐵12 + 2𝐵𝐵66]𝛼𝛼2𝛽𝛽 + �𝐴𝐴12
𝑅𝑅1

+ 𝐴𝐴22
𝑅𝑅2
� 𝛽𝛽

𝐾𝐾24 = 𝐾𝐾42 = −𝐶𝐶21𝛼𝛼𝛼𝛼 − 𝐶𝐶66𝛼𝛼𝛼𝛼,𝐾𝐾25 = 𝐾𝐾52 = −𝐶𝐶22𝛽𝛽2 − 𝐶𝐶66𝛼𝛼2, 
𝐾𝐾26 = 𝐾𝐾62 = �𝐷𝐷23 + 𝐹𝐹21

𝑅𝑅1
+ 𝐹𝐹22

𝑅𝑅2
� 𝛽𝛽,  

𝐾𝐾33 = −(𝐻𝐻11𝛼𝛼4 + 𝐻𝐻22𝛽𝛽4) − 2𝛼𝛼2𝛽𝛽2(𝐻𝐻12 + 2𝐻𝐻66) − 2𝛼𝛼2 �𝐵𝐵11
𝑅𝑅1

+ 𝐵𝐵12
𝑅𝑅2
� −  2𝛽𝛽2 �𝐵𝐵12

𝑅𝑅1
+ 𝐵𝐵22

𝑅𝑅2
�

− �2𝐴𝐴12
𝑅𝑅1𝑅𝑅2

+ 𝐴𝐴11
𝑅𝑅12

+ 𝐴𝐴22
𝑅𝑅22
� ,

𝐾𝐾34 = 𝐾𝐾43 = 𝐼𝐼11𝛼𝛼3 + 𝐼𝐼21𝛼𝛼𝛽𝛽2 + 2𝐼𝐼66𝛼𝛼𝛽𝛽2 + 𝐶𝐶11
𝑅𝑅1
𝛼𝛼 + 𝐶𝐶21

𝑅𝑅2
𝛼𝛼,

𝐾𝐾35 = 𝐾𝐾53 = 𝐼𝐼12𝛼𝛼2𝛽𝛽 + 𝐼𝐼22𝛽𝛽3 + 2𝐼𝐼66𝛼𝛼2𝛽𝛽 + 𝐶𝐶12
𝑅𝑅1
𝛽𝛽 + 𝐶𝐶22

𝑅𝑅2
𝛽𝛽,

𝐾𝐾36 = 𝐾𝐾63 = �
−𝐾𝐾13𝛼𝛼2 − 𝐾𝐾23𝛽𝛽2 −

𝐷𝐷13
𝑅𝑅1
− 𝐷𝐷23

𝑅𝑅2
− �𝐽𝐽11

𝑅𝑅1
+ 𝐽𝐽12

𝑅𝑅2
� 𝛼𝛼2 − �𝐽𝐽21

𝑅𝑅1
+ 𝐽𝐽22

𝑅𝑅2
� 𝛽𝛽2

− �2 𝐹𝐹12
𝑅𝑅1𝑅𝑅2

+ 𝐹𝐹22
𝑅𝑅22

+ 𝐹𝐹11
𝑅𝑅12
�

� ,

𝐾𝐾44 = −𝐿𝐿11𝛼𝛼2 − 𝐿𝐿66𝛽𝛽2 − 𝑂𝑂55,𝐾𝐾45 = 𝐾𝐾54 = −(𝐿𝐿12 + 𝐿𝐿66)𝛼𝛼𝛽𝛽,
𝐾𝐾46 = 𝐾𝐾64 = �𝑁𝑁13 − 𝑂𝑂55 + 𝑀𝑀11

𝑅𝑅1
+ 𝑀𝑀12

𝑅𝑅2
� 𝛼𝛼, 

𝐾𝐾55 = −𝐿𝐿66𝛼𝛼2 − 𝐿𝐿22𝛽𝛽2 − 𝑂𝑂44,  
𝐾𝐾56 = 𝐾𝐾65 = �−𝑂𝑂44 + 𝑁𝑁23 + 𝑀𝑀21

𝑅𝑅1
+ 𝑀𝑀22

𝑅𝑅2
� 𝛽𝛽, 

𝐾𝐾66 = �−𝑂𝑂55𝛼𝛼2 − 𝑂𝑂44𝛽𝛽2 − 𝑆𝑆33 + 2 𝑃𝑃23
𝑅𝑅2
− 2 𝑃𝑃13

𝑅𝑅1
− 𝑂𝑂11

𝑅𝑅12
− 2 𝑂𝑂12

𝑅𝑅1𝑅𝑅2
− 𝑂𝑂22

𝑅𝑅22
� ,  

        

(11)

 

where 

�𝐴𝐴𝑖𝑖𝑖𝑖 ,  𝐵𝐵𝑖𝑖𝑖𝑖, 𝐻𝐻𝑖𝑖𝑖𝑖, 𝐶𝐶𝑖𝑖𝑖𝑖,𝐹𝐹𝑖𝑖𝑖𝑖 𝐼𝐼𝑖𝑖𝑖𝑖� = 𝑄𝑄𝑖𝑖𝑖𝑖 ∫ [1.0,  𝑧𝑧, 𝑧𝑧2, 𝑓𝑓(𝑧𝑧), 𝑓𝑓′(𝑧𝑧), 𝑧𝑧𝑧𝑧(𝑧𝑧)]
ℎ
2�

−ℎ
2�

𝑑𝑑𝑑𝑑;

𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑄𝑄𝑖𝑖𝑖𝑖 ∫ {[𝑓𝑓(𝑧𝑧)]2}
ℎ
2�

−ℎ
2�

𝑑𝑑𝑑𝑑;𝑂𝑂𝑖𝑖𝑖𝑖 = 𝑄𝑄𝑖𝑖𝑖𝑖 ∫ {[𝑓𝑓′(𝑧𝑧)]2}
ℎ
2�

−ℎ
2�

𝑑𝑑𝑑𝑑;

�𝐷𝐷𝑖𝑖𝑖𝑖 , 𝑆𝑆𝑖𝑖𝑖𝑖,𝑃𝑃𝑖𝑖𝑖𝑖� = 𝑄𝑄𝑖𝑖𝑖𝑖 ∫ {[𝑓𝑓″(𝑧𝑧)], [𝑓𝑓″(𝑧𝑧)]2, [𝑓𝑓′(𝑧𝑧)]}
ℎ
2�

−ℎ
2�

𝑑𝑑𝑑𝑑;

�𝐾𝐾𝑖𝑖𝑖𝑖,  𝑁𝑁𝑖𝑖𝑖𝑖� = 𝑄𝑄𝑖𝑖𝑖𝑖 ∫ 𝑓𝑓″(𝑧𝑧)[𝑧𝑧, 𝑓𝑓(𝑧𝑧)]
ℎ
2�

−ℎ
2�

𝑑𝑑𝑑𝑑;

�𝐽𝐽𝑖𝑖𝑖𝑖,  𝑀𝑀𝑖𝑖𝑖𝑖� = 𝑄𝑄𝑖𝑖𝑖𝑖 ∫ 𝑓𝑓′(𝑧𝑧)[𝑧𝑧, 𝑓𝑓(𝑧𝑧)]
ℎ
2�

−ℎ
2�

𝑑𝑑𝑑𝑑;

                                 (12) 

Numerical Result and Discussion 
To carry out the static analysis of the sandwich spherical shells, the following material 
characteristics stated in Eq. (13)-(14) and non-dimensional parameters stated in Eq. (15) are taken 
into account. 
Face Sheet Properties 
𝑬𝑬𝟏𝟏
𝑬𝑬𝟐𝟐
   = 𝟐𝟐𝟐𝟐,  𝑬𝑬𝟑𝟑

𝑬𝑬𝟐𝟐
   = 𝟏𝟏,   𝑮𝑮𝟏𝟏𝟏𝟏

𝑬𝑬𝟐𝟐
= 𝑮𝑮𝟏𝟏𝟏𝟏

𝑬𝑬𝟐𝟐
= 𝟎𝟎.𝟓𝟓, 𝑮𝑮𝟐𝟐𝟐𝟐

𝑬𝑬𝟐𝟐
= 𝟎𝟎.𝟐𝟐, 𝝁𝝁𝟏𝟏𝟏𝟏 = 𝝁𝝁𝟏𝟏𝟏𝟏 = 𝝁𝝁𝟐𝟐𝟐𝟐 = 𝟎𝟎.𝟐𝟐                                    (13) 
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Core Properties 

 𝑬𝑬𝟏𝟏 = 𝑬𝑬𝟐𝟐 = 𝟎𝟎.𝟎𝟎𝟎𝟎,  𝑬𝑬𝟑𝟑 = 𝟎𝟎.𝟓𝟓, 𝑮𝑮𝟏𝟏𝟏𝟏 = 𝑮𝑮𝟐𝟐𝟐𝟐 = 𝟎𝟎.𝟎𝟎𝟎𝟎,𝑮𝑮𝟏𝟏𝟏𝟏 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎, 
𝝁𝝁𝟏𝟏𝟏𝟏 = 𝝁𝝁𝟑𝟑𝟑𝟑 = 𝝁𝝁𝟑𝟑𝟑𝟑 = 𝟎𝟎.𝟐𝟐𝟐𝟐                                                       (14) 

and                                        

 

 

𝒖𝒖� �𝟎𝟎, 𝒃𝒃
𝟐𝟐

, 𝒛𝒛
𝒉𝒉
� = 𝒉𝒉𝟐𝟐𝑬𝑬𝟑𝟑

𝒒𝒒𝟎𝟎𝒂𝒂𝟑𝟑
𝒖𝒖,       𝒘𝒘� �𝒂𝒂

𝟐𝟐
, 𝒃𝒃
𝟐𝟐

, 𝒛𝒛
𝒉𝒉
� = 𝟏𝟏𝟏𝟏𝟏𝟏𝒉𝒉𝟑𝟑𝑬𝑬𝟑𝟑

𝒒𝒒𝟎𝟎𝒂𝒂𝟒𝟒
𝒘𝒘,  

�𝝈𝝈�𝒙𝒙, 𝝈𝝈�𝒚𝒚� �
𝒂𝒂
𝟐𝟐

, 𝒃𝒃
𝟐𝟐

, 𝒛𝒛
𝒉𝒉
� = 𝒉𝒉𝟐𝟐

𝒒𝒒𝟎𝟎𝒂𝒂𝟐𝟐
�𝝈𝝈𝒙𝒙, 𝝈𝝈𝒚𝒚�,    𝝉𝝉�𝒙𝒙𝒙𝒙 �𝟎𝟎,𝟎𝟎, 𝒛𝒛

𝒉𝒉
� = 𝒉𝒉𝟐𝟐

𝒒𝒒𝟎𝟎𝒂𝒂𝟐𝟐
𝝉𝝉𝒙𝒙𝒚𝒚

𝝉𝝉�𝒛𝒛𝒛𝒛 �𝟎𝟎, 𝒃𝒃
𝟐𝟐

, 𝒛𝒛
𝒉𝒉
� = 𝒉𝒉

𝒒𝒒𝟎𝟎𝒂𝒂
𝝉𝝉𝒛𝒛𝒛𝒛,     𝝉𝝉�𝒚𝒚𝒚𝒚 �

𝒂𝒂
𝟐𝟐

,𝟎𝟎, 𝒛𝒛
𝒉𝒉
� = 𝒉𝒉

𝒒𝒒𝟎𝟎𝒂𝒂
𝝉𝝉𝒚𝒚𝒚𝒚.

                      (15) 

where, E3 is modulus of elasticity of the middle layer i.e. the core of the sandwich shell. 
Sandwich plate consists of face sheets with thickness of 0.1h and the core with thickness 0.8h 

where h is the total thickness of the sandwich shells. The material properties used for the sandwich 
shell are mentioned in Eq. (13)-(14) whereas non-dimensional parameters are stated in Eq. (15). 
Table 1 shows the comparison of non-dimensional displacements and stresses obtained using the 
current theory with those presented by third-order theory of Reddy [10], first-order theory of 
Mindlin [13] and Exact elasticity solution by Pagano [12] wherever applicable. Through-the-
thickness distributions of displacements and stresses are plotted in Fig. 2. The numerical results 
are presented for R/a = 5, 10, 20, 50, 100 and ∞. Table 1 reveals that the current theory predicts 
the numerical results in good agreement with existing literature. Transverse shear stresses are 
discontinuous at the layer interface because those are calculated using constitutive relations. To 
get the stress continuity at the layer interface, those must be calculated using the equilibrium 
equations of the theory of elasticity. 

 
Table 1 Non-dimensional displacements and stresses of three-layer (00/core/00)  sandwich 

spherical shells under sinusoidal load (a = 10h, R1 = R2 = R). 
R/a Theory 𝑢𝑢�  𝑤𝑤�  𝜎𝜎�𝑥𝑥 𝜎𝜎�𝑦𝑦 𝜏𝜏𝑥̅𝑥𝑥𝑥 𝜏𝜏𝑥̅𝑥𝑥𝑥 𝜏𝜏𝑦̅𝑦𝑦𝑦 
5 Present (𝜀𝜀𝑧𝑧 ≠ 0) 0.0124 0.9965 1.0655 0.0772 0.0926 0.3108 0.0558 
 Reddy [10] (𝜀𝜀𝑧𝑧 = 0) 0.0131 1.0063 1.0733 0.0745 0.0932 0.2956 0.0486 
 Mindlin [13] (𝜀𝜀𝑧𝑧 = 0) 0.0109 0.7122 1.0147 0.0607 0.0715 0.3096 0.0384 

10 Present (𝜀𝜀𝑧𝑧 ≠ 0) 0.0099 1.0152 1.1002 0.0921 0.0805 0.3166 0.0569 
 Reddy [10] (𝜀𝜀𝑧𝑧 = 0) 0.0102 1.0250 1.1081 0.0891 0.0812 0.3011 0.0495 
 Mindlin [13] (𝜀𝜀𝑧𝑧 = 0) 0.0088 0.7215 1.0385 0.0708 0.0628 0.3137 0.0389 

20 Present (𝜀𝜀𝑧𝑧 ≠ 0) 0.0085 1.0199 1.1128 0.0993 0.0739 0.3181 0.0571 
 Reddy [10] (𝜀𝜀𝑧𝑧 = 0) 0.0086 1.0298 1.1207 0.0962 0.0747 0.3025 0.0497 
 Mindlin [13] (𝜀𝜀𝑧𝑧 = 0) 0.0077 0.7238 1.0471 0.0757 0.0582 0.3147 0.0390 

50 Present (𝜀𝜀𝑧𝑧 ≠ 0) 0.0076 1.0213 1.1247 0.1035 0.0698 0.3185 0.0572 
 Reddy [10] (𝜀𝜀𝑧𝑧 = 0) 0.0077 1.0312 1.1267 0.1003 0.0707 0.3029 0.0498 
 Mindlin [13] (𝜀𝜀𝑧𝑧 = 0) 0.0070 0.7245 1.0512 0.0786 0.0553 0.3150 0.0390 

100 Present (𝜀𝜀𝑧𝑧 ≠ 0) 0.0073 1.0215 1.1205 0.1048 0.0685 0.3186 0.0572 
 Reddy [10] (𝜀𝜀𝑧𝑧 = 0) 0.0073 1.0314 1.1284 0.1017 0.0693 0.3029 0.0498 
 Mindlin [13] (𝜀𝜀𝑧𝑧 = 0) 0.0068 0.7246 1.0524 0.0795 0.0544 0.3150 0.0390 

Plate Present (𝜀𝜀𝑧𝑧 ≠ 0) 0.0069 1.0215 1.1220 0.1062 0.0671 0.3186 0.0572 
 Reddy [10] (𝜀𝜀𝑧𝑧 = 0) 0.0070 1.0315 1.1300 0.1030 0.0679 0.3029 0.0498 
 Mindlin [13] (𝜀𝜀𝑧𝑧 = 0) 0.0066 0.7246 1.0535 0.0805 0.0534 0.3151 0.0390 
 Exact [12] 0.0071 1.1002 1.1518 0.1098 0.0706 0.2997 0.0526 
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Conclusions 
In this work, a new hyperbolic higher-order shell theory is used to obtained closed-form solutions 
for the static analysis of a sandwich spherical shell under sinusoidal loading. To take into account 
the effect of cross-sectional deformation, the theory is formulated by adding hyperbolic kinematic 
function in terms of thickness coordinates. Using the principle of virtual work, the governing 
equation and the associated boundary condition are obtained. Navier's solution method is used as 
solution technique. Based on the numerical results and discussion it is concluded that the present 
theory accurately predict the static response of sandwich spherical shells under transverse loading. 
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Fig. 2 Through-the-thickness plots of displacements and stresses (R/a = 5, a/h = 10) 
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