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Abstract. Beam-down solar concentrators with a secondary reflector are receiving a lot of 
attention at present. Large telescopic dual-receiver solar concentrators with Gregorian and 
Cassegrain alignments have been modelled and investigated in the present study with each 
telescopic design having a unique set of receivers that are mounted and anchored to the ground. A 
comparative assessment of both of the telescopic alignments have been carried out along with 
minimum image radii The results reveal that both telescopic designs are capable of splitting 
incoming sunlight and facilitating the use of two receivers. For the design and simulation of 
telescopic designs, Tonatiuh and Soltrace have been employed for a comparative evaluation. Both 
of the conventional and telescopic designs using Soltrace and Cassegrain, as well as conventional 
designs by Tonatiuh, produced identical results in the simulation of total power on the receiver, 
However, a sizable peak flux discrepancy was seen between the results from Tonatiuh and 
Soltrace. 
Introduction 
Overhead positioning of a large heat receiver of the tower, strilling engine, and furnace has 
difficulties during operation, maintenance, and construction. Heat is lost during the transfer 
procedure because the receiver location on the tower requires a lot of energy to push up. To solve 
this issue, research is being done on a beam-down system with a ground-fixed receiver [1]. 

Beam-down concentrating solar technologies supply useful heat for extremely efficient power 
cycles and direct solar fuels with receiver reactor technology at high temperatures.  Because of the 
high-temperature heat production and chemical reactions occur on the ground rather than at a great 
height, the system is safer [2-12][7, 13, 14].  A secondary reflector is a tool for beam-down 
technologies. Solar collector with a secondary reflector is the fastest-growing technology [15-25].  
One of the solar thermal energy technologies with a secondary reflector is a parabolic dish [26-
29]. 

Using secondary reflectors in parabolic dish design is highly related to the design of Gregorian 
and Cassegrain telescopes because these telescopes are a two-mirror system [30]. Designing  and 
aberration correction are the main works during designing telescopes [31-33]. Applying a 
telescopic design for a parabolic dish may be used to increase the concentration ratio and then 
reduce optical and thermal losses and increase collector efficiency by correcting aberration. 
Optical aberration prevents the conventional parabolic dish from achieving the 46,000 geometric 
concentration ratio that is thermodynamically feasible.  Due to the aberration, only a maximum of 
11,000 is obtained with a 1.0 intercept factor [26]. This shows that optical aberration is the main 
problem of the solar thermal technology. Therefore, an optical aberration decreases the geometric 
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concentration ratio, increases re-radiation and other optical losses, and decreases collector 
efficiency. One of the important issues in telescopic design is the control of optical aberration [34-
37]. 

There are no studies reported so far, to use telescopes for solar thermal energy technology and 
correcting optical aberration during design of a conventional parabolic dish. Additionally, current 
research does not consider sunlight blockage by secondary reflectors. This study proposes 
consideration of light blockage by secondaryreflectors as an opportunity for the division of 
incoming sunlight into two approximately equal parts. Utilization of solar energy requires multi-
operation such as during daytime and nighttime. Dividing the receiver into two parts will help to 
reduce the challenges related to a single receiver. Moreover, there is a research gap noticed to use 
beam-down and beam-up solar collection simultaneously.  

Therefore, paraxial ray tracing-based research was carried out in this study on the parabolic 
dish.The study is based on the design principle of the Gregorian and Cassegrain telescopes (two-
mirror optics) and named telescopic paraboloidal solar concentrator. The main advantage of this 
new concept is: (i) to reduce the receiver load of the conventional parabolic dish by dividing it into 
two receivers;(ii) to place some challenging receiver configuration such as concentrated 
photovoltaics on the ground;(iii) to make telescopes to function both as solar thermal energy 
technology and telescope. Therefore, the tertiary reflector was added to a Gregorian telescope, 
whilefront and back sides simultaneous reflecting secondary reflector was added to Cassegrain 
telescope without disturbing the existing telescopes operations. 
Methodology 
Large-scale design of Gregorian and Cassegrain telescopic dual receiver system 
A large-scale Gregorian and Cassegrain telescopic dual receiver paraboloidal solar concentrators 
were designed by paraxial ray tracing (Gaussian optics) method. Then the system was modeled 
and simulated by Monte Carlo ray tracing Tonatiuh, Tonatiuh-Mathematical combination and 
Soltrace software. The telescopes’ existing design was modified to make it a solar thermal energy 
technology. Consequently, tertiary parabolic reflector was added to Gregory telescope, while the 
secondary in Cassegrain telescope was made with front and back sides simultaneously reflecting. 
Secondary and tertiary reflectors had the same diameter and opposite in direction. i.e., secondary 
views primary concavely and tertiary set up as conventional parabolic dish or were made back-to-
back connected. 

Axial obscuration ratio and f-Number selected were 0.5 and 1.8 respectively. Firstly, Gregory 
telescopc was designed and then the Cassegrain telescopic was designed depending upon 
Gregorian design. As indicated in Table 1, Cassegrain was designed by converting Gregorian 
telescopic by removing tertiary reflector from Gregory and reducing the distance between the two 
concave mirrors in Gregory by half.  
 

Table 1: large-scale dimensions of Gregorian and Cassegrain telescopic dual receiver 
paraboloidal solar concentrator. 

 Gregorian design Cassegrain design 
Diameter(m) Focal 

length(m) 
Distance 
between 
mirrors(m) 

Diameter(
m) 

Focal 
length(m) 

Distance 
between  
Mirrors(m) 

Primary reflector      30 54        30   
Secondary 
reflector 

    21.21 20.4414          81 21.21 20.4414         40.5 

Tertiary reflector     21.21 20.4414          81         - -         - 
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Results and discussion 
Gregorian telescopic paraboloidal dual receiver solar concentrator 
This study was performed by considering light blockage by secondary reflectors as an opportunity 
for dual receiver solar thermal energy technology design.  

 

Figure 1: Secondary reflector blocking the sun light, as drawn by Soltrace 
As Figure 1 indicates 29,994,611 light rays from 60 million released rays were captured 

secondary reflectorwhileprimary reflector captured 30,005,389 rays. Therefore, incoming rays 
were divided into two equal parts with axial obscuration ratio of 0.5. 

 

Figure 2: Gregorian telescopic paraboloidal solar concentrator with mounted and ground-fixed 
receiver: (a) ray graphics in Tonatiuh software and (b) ray graphics in Soltrace. 

According to Figure 2above in Gregorian design, back-to-back connected secondary and 
tertiary parabolic dish reflectors were used to divide incoming sunlight to mounted and ground-
fixed receivers in Tonatiuh.  In soltrace separate modeling was made for secondary and tertiary 
reflectors. 
Cassegrain telescopic paraboloidal dual receiver solar concentrator 
As shown in Figure 3, the Cassegrain telescope design was modified by making secondary 
reflector to reflect at both back and front sides simultaneously. 
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Figure 3: Cassegrain telescopic paraboloidal solar concentrator with mounted and ground-fixed 
receiver: (a) ray graphics in Tonatiuh software and (b) ray graphics in Soltrace. 

As shown in Table 3 in case of Tonatiuh, a 30-meter diameter and 54-meter focal length 
parabolic dish has a total power of 706.354 kW, which is slightly greater (weak convergency or 
accuracy) than from the sum of the total power of the Cassegrain design and significantly different 
from the sum of the total power of the Gregorian design. Therefore, telescopic designs are better 
than conventional designs. According to Table 5 the sum of errors in the Gregorian design is 
0.00104877818, which is smaller than the errors in the Cassegrain and conventional designs. 
Therefore, the smallest error observed in Gregorian design when comparing with the errors of 
Cassegrain and conventional designs indicates that Gregorian design is more accurate. 

During sunshape simulation, as the distance from the primary mirror to the receiver increases, 
the accuracy increases. This is confirmed by the optical tool verification study of Wang et al.[38]. 
According to the authors, as the distance increase between the primary mirror and the target, the 
radiance distribution will be extremely similar to the corresponding statistical distribution of the 
slope error or sunshape. Therefore, Gregorian telescopic designs show better convergence than 
conventional and Cassegrain designs. 

As indicated in Table 2,  the sum of total power in case of Soltrace is equal in Gregorian and 
Cassegrain designs. In two cases it is 706.819kW. 

 
Table 2: total power and peak flux Gregorian and Cassegrain telescopic paraboloidal solar 

concentrator 

 Gregorian telescopic                 Cassegrain telescopic 

 Mounted receiver Ground-fixed 
receiver 

Mounted receiver Ground-fixed receiver 

 Ton
atiu
h 

Tonati
uh-
mathe
matica 

soltrace Ton
atiu
h 

Tonati
uh 
Mathe
matica 

soltr
ace 

Ton
atiu
h 

Tonati
uh 
Mathe
matica 

 
Soltrace 

Ton
atiu
h 

Tonati
uh 
Mathe
matica 

Solt
race 

Total 
ower(k
W) 

335.
199 

331.62
5 

353.346 339.
383 

339.42
4 

353.
473 

352.
449 

352.45
6 

353.346 350.
951 

353.47
4 

353.
473 

Peak 
flux(K
w/m2) 

502
0.55 

- 22,254,
000,000 

68.0
677 

- 381
1.23 

193
4.11 

- 22,254,
000,000 

740.
605 

- 311
241
0 
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Table 3: Tonatiuh’s total power and peak flux of telescopic and conventional paraboloidal solar 
concentrators 

 Gregorian design Cassegrain design Conventional 
design 

 Mounted 
receiver 

Ground-
fixed 
receiver 

added 
total 
power 

Mounted 
receiver 

Ground-
fixed 

Added total 
power 

 
Receiver 

Total 
power(k
W) 

335.199 339.383 674.58
2 

352,449 350.951 703.4 706.354 

Peak 
flux(kW/
m2) 

1.0382*10^7 170.514 - 1.09102*10
^7 

173.725 - 3.44605*10^6 

As Table 4 describes, the simulation of conventional design gave 706.861kW. Therefore, there is no total power 
difference between conventional and telescopic designs by soltrace simulation.  

 
Table 4: Total power and peak flux on the receiver of 30-meter diameter conventional parabolic 

dish 

 Tonatiuh Tonatiuh-
Mathematica 

Soltrace 

Total 
power(kW) 

706.354 706.332 706.861 

Peak 
flux(kW/m2) 

3,444.95 - 1,569,190,000 

 

Table 5: Errors of telescopic design 
Gregorian design Cassegrain design 

Tonatiuh error Tonatiuh error  

Mounted 

receiver 

Ground-fixed 

receiver 

Sum of error Mounted 

receiver 

Ground-fixed 

reciever 

Sum of error 

0.000093384 0.00095539 0.0010487781 0.000256412 0.000112354 0.00036887 

 

Generally, the simulation by Tonatiuh was very fast. It required 11 minutes to trace 60 million, 
while Soltrace used 2 hours for single run. Better convergence was obtained in case of Gregorian 
design by Tonatiuh. Minimum sun image radius was easily and clearly obtained by Tonatiuh-
Mathematica combination. 

To get total power and peak flux on receivers for comparison, modeling and simulation of a 
parabolic dish with a 30-meter diameter and 54-meter focal length were carried out. As previously 
indicated, all designs have nearly identical residual total powers, with the exception of the 
Gregorian design. However, a significant variation was seen in each case for the peak flux. The 
truth is closely akin to the study of [39] in that there was basically no difference between the 
Soltrace and the Tonatiuh estimates in terms of the solar total power influencing the target or the 
reception tube. 
Conclusion 
Designing Gregorian and Cassegrain telescopic dual receiver paraboloidal solar concentrators 
allows for the simultaneous usage of beam-down and beam-up sun beams. Both telescoping 
systems can produce two receivers by dividing the incoming light. The new design used the chance 
to be built ground-fixed and mounted receivers in both telescopic forms as a result of sunlight 
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being blocked by secondary reflectors in beam-down concentrators. In order to avoid interfering 
with a Gregorian telescope's current operations, a tertiary reflector was added. While Cassegrain's 
existing functions are unaffected by simultaneous back and front side reflections. Reflecting 
telescopes can serve so as solar thermal energy technologies in addition to telescopes. 
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