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Abstract. This work considers size-effects phenomena associated with Burgers tensor and heat 
transfer in isotropic plastic materials under thermal loading. The virtual power principle, the first 
and second laws of thermodynamics are used to obtain the balance of forces, the balance of energy, 
and the free-energy imbalance in local forms. Also, the constitutive relations for microscopic 
stresses associated with the Burgers tensor are obtained. The balance of microscopic forces is 
supplemented with the constitutive relations for the stresses to form the plastic flow rule. The 
presence of material length scale in the flow rule shows that it is possible to study size effects 
through the Burgers tensor. 
Introduction 
Investigations have shown that within the micron range of about 500 nanometers to 50 
micrometers, most metals generally exhibit size-dependent behaviors. These size-effects are not 
known within the context of the classical plasticity because of its inability to accommodate 
intrinsic material length scales. The theories of strain gradient plasticity have been developed to 
address this shortcoming. 

There are a number of phenomenological gradient theories in the literature, with the earliest 
attempt by Aifantis [1] whose theory incorporates and energetic length scale via the Laplacian of 
the accumulated plastic strain within a modified von Mises yield criterion for the stress. Other well 
established theories oinclude the works of Gurtin [2], Gudmundson [3] and Gurtin and Anand [4]. 

Recently, Borokinni et.al.,[5] investigated size-effects in isotropic materials associated with the 
divergence of plastic distortion. The work shows that the divergence of the transpose of plastic 
distortion is a measure of the skew part of the Burgers tensor. However, it is observed that such 
size-effect does not include the symmetric part of the Burgers tensor which also plays a role in 
investigating size-effects. 

Furthermore, many theories of gradient plasticity are purely mechanical, and so not much 
attention is given to thermoplastic materials exhibiting size-dependent behaviors. 

This paper present a coupled thermo-mechanical theory of distortion gradient plasticity that 
accounts for the Burgers tensor. 
Basic Kinematics Relations 
Suppose a point 𝑿𝑿 of a body 𝐵𝐵 in a region of space 𝐸𝐸 has a displacement 𝒖𝒖 at time 𝑡𝑡. The small 
deformation theory of continuum plasticity allows the displacement gradient ∇𝒖𝒖 to be additively 
decomposed 

 
 ∇𝒖𝒖 = 𝑯𝑯𝒆𝒆 + 𝑯𝑯𝒑𝒑          (1) 
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into elastic distortion 𝑯𝑯𝒆𝒆 and plastic distortion 𝑯𝑯𝒑𝒑. The second order tensor 𝑯𝑯𝒆𝒆 measures the 
stretch and rotation of the underlying material structure, in this case, a lattice. The second order 
tensor 𝑯𝑯𝒑𝒑 measures defects in that material structure arising from the motion of dislocations 
through the lattice. The Burgers tensor 𝑮𝑮 is defined as the second order tensor 
 
𝑮𝑮 = ∇ × 𝑯𝑯𝒑𝒑,          (2) 

 
which is also a measure of defect in the material associated with geometrically necessary 
dislocation densities (GNDs). For most metals, the volumetric change is not accompanied by 
plastic deformation, and so the trace of 𝑯𝑯𝒑𝒑 is zero. That is, 
 
 𝑡𝑡𝑡𝑡𝑯𝑯𝒑𝒑 = 0.           (4) 
 
Macroscopic and Microscopic Forces 
Here, we introduce power expended through the Burgers tensor rate �̇�𝑮 by a second order 
microscopic stress denoted as 𝑺𝑺. Thus, we shall assume the following: 

• The Cauchy stress 𝑻𝑻 is work-conjugate to the elastic distortion 𝑯𝑯𝒆𝒆; 
• The symmetric and deviatoric plastic microscopic stress 𝑻𝑻𝒑𝒑 is work-conjugate to the plastic 

distortion 𝑯𝑯𝒑𝒑; and 
• The second order microscopic stress 𝑺𝑺 is work-conjugate to the Burgers tensor 𝑮𝑮. 

In addition to work done by the body force 𝒃𝒃 and macrotraction force 𝒕𝒕, we assume that there exist 
a microtraction stress tensor 𝑲𝑲 which is work-conjugate to the plastic distortion rate. 
The macroscopic force balance is the classical momentum equation in local form given by 
 
 div𝑻𝑻 + 𝒃𝒃 = 𝟎𝟎  in 𝑃𝑃, and  𝑻𝑻𝑻𝑻 = 𝒕𝒕  in  𝜕𝜕𝑃𝑃,       (5) 
 
where 𝑃𝑃 is an arbitrary small portion of the body 𝐵𝐵 and 𝜕𝜕𝑃𝑃 is the boundary of 𝑃𝑃. 
To obtain the microscopic force balance, we note that the rate-like kinematic relation is given by 
 
 ∇�̇�𝒖 = �̇�𝑯𝑒𝑒 + �̇�𝑯𝑝𝑝.          (6) 
 
If the motion is microscopic then �̇�𝒖 = 𝟎𝟎, so that �̇�𝑯𝑒𝑒 = −�̇�𝑯𝑝𝑝. The power balance is given by 
 

� �𝑻𝑻: �̇�𝑯𝑒𝑒 + 𝑻𝑻𝒑𝒑: �̇�𝑯𝑝𝑝 + 𝑺𝑺: �̇�𝑮�𝑑𝑑𝑑𝑑 = � 𝒃𝒃 ∙ �̇�𝒖
𝑃𝑃

𝑑𝑑𝑑𝑑 + � �𝒕𝒕 ∙ �̇�𝒖 + 𝑲𝑲: �̇�𝑯𝑝𝑝�𝑑𝑑𝑑𝑑.
𝜕𝜕𝑃𝑃𝑃𝑃

                 (7) 

  
For microscopic motion, we have 
 

� �(𝑻𝑻𝒑𝒑 − 𝑻𝑻𝒐𝒐): �̇�𝑯𝑝𝑝 + 𝑺𝑺: �̇�𝑮�𝑑𝑑𝑑𝑑 = � 𝑲𝑲: �̇�𝑯𝑝𝑝𝑑𝑑𝑑𝑑,
𝜕𝜕𝑃𝑃𝑃𝑃

                                                                (8) 

 
where the quantity 𝑻𝑻𝒐𝒐  is the deviatoric part of the Cauchy stress tensor 𝑻𝑻. 
We note that  
 
 𝑺𝑺: �̇�𝑮 = 𝑆𝑆𝑖𝑖𝑖𝑖ℰ𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖,𝑖𝑖

𝑝𝑝 . 
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Define the component  𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 of the hyperstress 𝕄𝕄 as 
 
 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑖𝑖ℰ𝑖𝑖𝑖𝑖𝑖𝑖.            (9) 
 
The power balance in Eq. 8 can be written as 
 

� �(𝑻𝑻𝒑𝒑 − 𝑻𝑻𝒐𝒐): �̇�𝑯𝑝𝑝 + 𝕄𝕄 ⋮ ∇𝑯𝑯𝒑𝒑̇ �𝑑𝑑𝑑𝑑 = � 𝑲𝑲: �̇�𝑯𝑝𝑝𝑑𝑑𝑑𝑑.
𝜕𝜕𝑃𝑃𝑃𝑃

                                                             (10) 

 
By Gauss divergence theorem, the microscopic force balance in local form is given as 
 
 𝑻𝑻𝒐𝒐 = 𝑻𝑻𝒑𝒑 − div𝕄𝕄,           (11) 
 
with microtraction condition given as 
 
 𝕄𝕄𝑻𝑻 = 𝑲𝑲.             (12) 
 
Balance of Energy 
The balance of energy is essentially the first law of thermodynamics which is mathematically 
written as 
 

� ℰ̇
𝑃𝑃

𝑑𝑑𝑑𝑑 = � 𝑻𝑻: �̇�𝑯𝒆𝒆

𝑃𝑃
𝑑𝑑𝑑𝑑 + � 𝑻𝑻𝒑𝒑: �̇�𝑯𝒑𝒑

𝑃𝑃
𝑑𝑑𝑑𝑑 + � 𝕄𝕄 ⋮ ∇𝑯𝑯𝒑𝒑̇

𝑃𝑃
𝑑𝑑𝑑𝑑 − � 𝒒𝒒 ∙ 𝑻𝑻

𝜕𝜕𝑃𝑃
𝑑𝑑𝑑𝑑 + � 𝑄𝑄

𝑃𝑃
𝑑𝑑𝑑𝑑, (13) 

 
where ℰ is the internal energy measured per unit volume, 𝒒𝒒 is the heat flux measured per unit area, 
and 𝑄𝑄 is the heat supply measures per unit volume. 
By using the Gauss divergence theorem and noting that 𝑃𝑃 is arbitrary, then the balance of energy 
in local form is given by 
 
ℰ̇ = 𝑻𝑻:𝑯𝑯𝒆𝒆̇ + 𝑻𝑻𝒑𝒑:𝑯𝑯𝒑𝒑̇ + 𝕄𝕄 ⋮ ∇𝑯𝑯𝒑𝒑̇ − div𝒒𝒒 + 𝑄𝑄.            (14) 

 
Entropy Imbalance 
Let 𝜂𝜂 be the entropy at an arbitrary point of 𝑃𝑃. The second law of thermodynamics in local form 
is the given by the Clausius-Duhem inequality  
 

�̇�𝜂 ≥ −div �
𝒒𝒒
𝜗𝜗
� +

𝑄𝑄
𝜗𝜗

,                                                                                                                              (15) 
 
where 𝜗𝜗 > 0 is the absolute temperature. 
The free-energy 𝜑𝜑 is defined via the relation 
 
 ℰ = 𝜑𝜑 + 𝜗𝜗𝜂𝜂, 
 
so that we have 
 
ℰ̇ = �̇�𝜑 + 𝜗𝜗�̇�𝜂 + �̇�𝜗𝜂𝜂.          (16) 
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The balance of energy in term of free-energy and entropy is given by 
 

�̇�𝜑 + 𝜗𝜗�̇�𝜂 + �̇�𝜗𝜂𝜂 = 𝑻𝑻:𝑯𝑯𝒆𝒆̇ + 𝑻𝑻𝒑𝒑:𝑯𝑯𝒑𝒑̇ + 𝕄𝕄 ⋮ ∇𝑯𝑯𝒑𝒑̇ − div𝒒𝒒 + 𝑄𝑄 
 

⟹         𝑻𝑻:𝑯𝑯𝒆𝒆̇ + 𝑻𝑻𝒑𝒑:𝑯𝑯𝒑𝒑̇ + 𝕄𝕄 ⋮ ∇𝑯𝑯𝒑𝒑̇ − div𝒒𝒒 + 𝑄𝑄 ≥ �̇�𝜑 + 𝜂𝜂�̇�𝜗 +
𝒒𝒒
𝜗𝜗
∙ ∇ϑ − div𝒒𝒒 + 𝑄𝑄.        (17) 

 
The free-energy imbalance essential for the development of thermodynamically consistent 
constitutive equations is given by 
 

�̇�𝜑 + 𝜂𝜂�̇�𝜗 − 𝑻𝑻:𝑯𝑯𝒆𝒆̇ − 𝑻𝑻𝒑𝒑:𝑯𝑯𝒑𝒑̇ − 𝕄𝕄 ⋮ ∇𝑯𝑯𝒑𝒑̇ +
𝒒𝒒
𝜗𝜗
∙ ∇𝜗𝜗 ≤ 0.                                                        (18) 

 
Constitutive Relations 
We shall assume that the free-energy 𝜑𝜑 is additively decomposed into 
 
𝜑𝜑 = 𝜑𝜑𝑒𝑒 + 𝜑𝜑𝑝𝑝           (19) 
 
into elastic and plastic free-energies, and it is assumed that 
 
𝜑𝜑𝑒𝑒 = 𝜑𝜑𝑒𝑒(𝑬𝑬𝒆𝒆,𝜗𝜗) and  𝜑𝜑𝑝𝑝 = 𝜑𝜑𝑝𝑝(𝑮𝑮,𝜗𝜗) so that we have 𝜑𝜑 = 𝜑𝜑(𝑬𝑬𝒆𝒆,𝑮𝑮,𝜗𝜗).   (20) 
 
Furthermore, let the plastic stress 𝑻𝑻𝒑𝒑 be purely dissipative and rate-independent, while 𝕄𝕄 is purely 
energetic. By chain rule, we have 
 

�̇�𝜑 =
𝜕𝜕𝜑𝜑
𝜕𝜕𝜗𝜗

�̇�𝜗 +
𝜕𝜕𝜑𝜑𝑒𝑒

𝜕𝜕𝑬𝑬𝒆𝒆
: �̇�𝑬𝑒𝑒 +

𝜕𝜕𝜑𝜑𝑝𝑝

𝜕𝜕𝑮𝑮
: �̇�𝑮.                                                                                               (21) 

 
Observe that 
 

𝜕𝜕𝜑𝜑𝑝𝑝

𝜕𝜕𝑮𝑮
:𝑮𝑮 ̇ =

𝜕𝜕𝜑𝜑𝑝𝑝

𝜕𝜕𝐺𝐺𝑖𝑖𝑖𝑖
 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 �̇�𝐻𝑖𝑖𝑖𝑖,𝑖𝑖

𝑝𝑝   and  𝕄𝕄 ⋮ 𝛻𝛻�̇�𝑯𝑝𝑝 = 𝑺𝑺: �̇�𝑮. 

The free energy imbalance becomes 
 

�
𝜕𝜕𝜑𝜑
𝜕𝜕𝜗𝜗

+ 𝜂𝜂� �̇�𝜗 + �
𝜕𝜕𝜑𝜑𝑒𝑒

𝜕𝜕𝑬𝑬𝒆𝒆
− 𝑻𝑻� : �̇�𝑬𝑒𝑒 + �

𝜕𝜕𝜑𝜑𝑝𝑝

𝜕𝜕𝑮𝑮
− 𝑺𝑺� : �̇�𝑮 − 𝑻𝑻𝒑𝒑: �̇�𝑯𝒑𝒑 +

𝒒𝒒
𝜗𝜗
∙ ∇ϑ ≤ 0.                      (22) 

 
By the Coleman-Noll procedure (Gurtin et al., 2010), the constitutive relations for the entropy, 
Cauchy stress, plastic stress and polar microstresses are  
 

𝜂𝜂 = −
𝜕𝜕𝜑𝜑
𝜕𝜕𝜗𝜗

,   𝑻𝑻 =
𝜕𝜕𝜑𝜑𝑒𝑒

𝜕𝜕𝑬𝑬𝒆𝒆
,   𝑺𝑺 =

𝜕𝜕𝜑𝜑𝑝𝑝

𝜕𝜕𝑮𝑮
 .                                                                                           (23) 

 
Clearly, we have 
 

𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 = ℰ𝑖𝑖𝑖𝑖𝑖𝑖
𝜕𝜕𝜑𝜑𝑝𝑝

𝜕𝜕𝐺𝐺𝑖𝑖𝑖𝑖
.                                                                                                                           (24) 
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The mechanical dissipation and heat conduction inequalities are thus given as 
 
𝑻𝑻𝒑𝒑: �̇�𝑯𝒑𝒑 ≥ 0  and  𝒒𝒒 ∙ ∇ϑ ≤ 0.           (25) 
 
Isotropic Thermoplastic Solids 
Assume the quadratic form of the free energy 
 

𝜑𝜑 = 𝜇𝜇|𝑬𝑬𝒆𝒆|2 +
1
2
𝜆𝜆|tr𝑬𝑬𝒆𝒆|2 +

1
2
𝜇𝜇𝐿𝐿2|𝑮𝑮|2 + (𝑴𝑴𝒆𝒆:𝑬𝑬𝒆𝒆)(𝜗𝜗 − 𝜗𝜗𝑜𝑜) + (𝑨𝑨:𝑮𝑮)(𝜗𝜗 − 𝜗𝜗𝑜𝑜)−

𝑐𝑐𝑜𝑜(𝜗𝜗 − 𝜗𝜗𝑜𝑜)2

2𝜗𝜗𝑜𝑜
, 

                (26) 
 
where 𝑴𝑴𝒆𝒆 and 𝑨𝑨 are the macroscopic and microscopic stress-temperature moduli respectively.  
Following Eqs. 24 and 26, the constitutive relations for isotropic materials are given as 
 

𝜂𝜂 = −𝑴𝑴𝒆𝒆:𝑬𝑬𝒆𝒆 − 𝑨𝑨:𝑮𝑮 +
𝑐𝑐𝑜𝑜(𝜗𝜗 − 𝜗𝜗𝑜𝑜)

𝜗𝜗𝑜𝑜
                                                                                                  (27𝑎𝑎) 

𝑻𝑻 = 2𝑬𝑬𝒆𝒆 + 𝜆𝜆(tr𝑬𝑬𝒆𝒆)𝑰𝑰 + 𝑴𝑴𝒆𝒆(𝜗𝜗 − 𝜗𝜗𝑜𝑜)                                                                                                 (27𝑏𝑏) 
𝑺𝑺 = 𝜇𝜇𝐿𝐿2𝑮𝑮 + 𝑨𝑨(𝜗𝜗 − 𝜗𝜗𝑜𝑜).                                                                                                                       (27𝑐𝑐) 

 
We shall assume that the plastic stress 𝑻𝑻𝑝𝑝 obeys the codirectionality constraint and the heat flux 
obeys the Fourier law, given as (Gurtin et al., 2010; Borokinni et al., 2020): 
 

𝑻𝑻𝑝𝑝 = 𝑌𝑌𝑜𝑜
�̇�𝑯𝑝𝑝

|�̇�𝑯𝑝𝑝|
         for   �̇�𝑯𝑝𝑝 ≠ 𝟎𝟎,   and  𝒒𝒒 = −𝑘𝑘∇𝜗𝜗,                                                                     (28) 

where 𝒀𝒀𝒐𝒐 and  𝒌𝒌 are the flow resistance and coefficient of thermal conductivity respectively. 
To obtain the non local plastic flow rule that account for size effect due to Burgers tensor, the 
following relations between the partial derivative of the Burgers tensor and partial derivatives of 
the plastic distortion tensor will be useful 
 
ℰ𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝑖𝑖,𝑖𝑖 = 𝐻𝐻𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖

𝑝𝑝 − 𝐻𝐻𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖
𝑝𝑝 ,                                                                                                                   (29) 

where 

𝑮𝑮𝒊𝒊𝒊𝒊,𝒓𝒓 =
𝝏𝝏𝑮𝑮𝒊𝒊𝒊𝒊
𝝏𝝏𝑿𝑿𝒓𝒓

, 𝑯𝑯𝒊𝒊𝒋𝒋,𝒓𝒓𝒓𝒓
𝒑𝒑 =

𝝏𝝏𝟐𝟐𝑯𝑯𝒊𝒊𝒋𝒋
𝒑𝒑

𝝏𝝏𝑿𝑿𝒓𝒓𝝏𝝏𝑿𝑿𝒓𝒓
  𝐚𝐚𝐚𝐚𝐚𝐚    𝑯𝑯𝒊𝒊𝒋𝒋,𝒓𝒓𝒓𝒓

𝒑𝒑 =
𝝏𝝏𝟐𝟐𝑯𝑯𝒊𝒊𝒓𝒓

𝒑𝒑

𝝏𝝏𝑿𝑿𝒓𝒓𝝏𝝏𝑿𝑿𝒋𝒋
. 

Also, observe that  
 

div 𝕄𝕄 = 𝜇𝜇𝐿𝐿2[∆𝑯𝑯𝒑𝒑 − ∇div𝑯𝑯𝒑𝒑] + 𝑨𝑨T(∇ϑ ×). 
 
Thus by substituting the relevant constitutive relations for the microscopic stresses as deduced 
from Eqs. 27c and 28, the non-local plastic flow rule accounting for size effect due to Burgers 
tensor is 

𝑻𝑻𝒐𝒐 +  𝝁𝝁𝑳𝑳𝟐𝟐[∆𝑯𝑯𝒑𝒑 − 𝛁𝛁𝐚𝐚𝛁𝛁𝛁𝛁𝑯𝑯𝒑𝒑] + 𝑨𝑨𝐓𝐓(𝛁𝛁𝛁𝛁×) = 𝒀𝒀𝒐𝒐
�̇�𝑯𝒑𝒑

|�̇�𝑯𝒑𝒑|
   𝐩𝐩𝐩𝐩𝐩𝐩𝛁𝛁𝛁𝛁𝐚𝐚𝐩𝐩𝐚𝐚  �̇�𝑯𝒑𝒑 ≠ 𝟎𝟎. 
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Conclusion 
This paper has only presented plastic flow rule associated with the Burgers tensor. It has shown 
that the flow rule is non-local as it involves system of second-order partial differential equations 
in plastic distortion. Consequently, it is required that the plastic flow law be supplemented by 
appropriate initial-boundary conditions, and further, the system of equations obtained from balance 
of macroscopic forces, balance of energy and microscopic force balance be translated to variational 
problem, where well-posedness of the initial-boundary value problem could be investigated, and 
a finite element model can be provided. A report of the well-posedness and numerical 
implementations of this problem will be considered as a future work. 
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