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Abstract. The fluid Structure interface is an important area of research for its challenges in fluid 
structure dynamics in understanding the effect of fluid on motion and deformation of structures. 
In the current study, we used the L-Shaped pipe bent and did a CFD simulation at the velocity inlet 
condition of the range 1-3 m/s with keeping adiabatic wall condition and environmental pressure 
at the outlet. The reason for choosing L-Shaped bent is that it creates a sharp change in the flow 
direction, which leads to complex vortices, turbulence and pressure distribution. It also puts a 
significant mechanical load on the structure due to this change in flow, resulting in a large 
structural deformation. The result of CFD simulation is used to do the structural simulations at 
different material types, lengths of both arms, keeping the diameter, angle and fillet radius of the 
bent at a constant value. The database created is then used as an input to the machine learning 
(ML) model to predict for an arbitrary material and at any length of the bent without doing all the 
simulations. The simulation results also help to co-relate the impact of variation in length with the 
bent's stress, strain and displacement. 
Introduction 
Fluid-structure dynamics refers to studying the interactions between fluid flow and structures. This 
is an important area of research in various fields, including engineering, physics, and biology. One 
of the key challenges in fluid structure dynamics is understanding how fluid flow can affect the 
motion and deformation of structures. This is particularly relevant in the design of aircraft, ships, 
and other vehicles that must withstand the forces of fluid flow. 

One important tool for studying fluid-structure dynamics is computational fluid dynamics 
(CFD), which uses computer simulations to model the flow of fluids and their interactions with 
structures. CFD can provide valuable insights into the behavior of fluid-structure systems, 
allowing engineers to optimize designs and predict performance. Many factors can influence fluid-
structure dynamics, including the shape and size of the structure, the properties of the fluid, and 
the flow conditions. Research in this area often involves developing mathematical models and 
computational methods to accurately predict the behavior of these systems. 

The IB method, introduced by Charles Peskin in 1972, revolutionized the study of the 
interaction between flexible structures and viscous, incompressible fluids. The method, described 
in [1, 2], uses a fully coupled computational analysis that represents the fluid domain using an 
Eulerian mesh and the immersed structure using a Lagrangian grid. It employs the Dirac-delta 
function to transfer forces from the boundary to the fluid and velocity from the fluid to the 
boundary. Despite its limitations in only being applicable to flexible boundaries, researchers have 
made advancements in the method. Goldstein et al. [3] proposed a feedback forcing scheme to 
determine the fluid's external force, while Saiki & Biringen [4] used a discrete hat function for 
transfer of force and velocity information. Mohd-Yusof [5] took it further by creating a direct 
forcing formulation, eliminating the need for discrete functions or feedback forcing, using the 
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pseudo-spectral method. The IB method has also been applied to other areas, such as the analysis 
of blood clotting by Fogelson & Guy [6], where they modeled a fluid containing suspended 
platelets and included chemical reaction equations to study their response to stimuli. 

Significant progress has been made in the field of fluid-structure interaction (FSI) by combining 
the Navier-Stokes (N-S) and Euler-Bernoulli (E-B) equations. These equations are utilized to 
model an incompressible fluid flow and a flexible immersed boundary respectively, as described 
in [7-10]. The N-S equations control the behavior of the fluid by considering mass and momentum 
conservation, while the E-B theory predicts small deflections of structures subjected to pointwise 
or distributed lateral loads. This theory is founded on a fourth-order differential equation that links 
the transverse displacement of a structure to the force applied to it. The major challenge in FSI lies 
in managing the N-S and E-B equations together. Energy transport between a beam-like structure 
and a Newtonian fluid is explored in [11]. Pontaza & Menon [12] introduced an FSI problem of a 
flexible pipe in a viscous fluid, modeled as an E-B beam, to determine its response to vortex-
induced vibrations in the time domain. 

Recently, the use of physics-guided machine learning (ML) approaches has become prevalent 
due to their ability to combine data-driven methods with physical knowledge to build descriptive 
models, carry out efficient simulations, and identify input-output relationships. For instance, deep 
neural networks (NNs) have been utilized to approximate partial differential equations by training 
on extensive datasets [13,14]. ML techniques have been explored in different areas such as 
structural dynamics, fluid mechanics, and FSI problems. In [15], recurrent NNs and multi-layer 
perceptrons were merged with domain knowledge to enhance structural dynamics simulations. For 
fluid domains with complex boundary conditions, a hybrid network, V2P-Net, was designed to 
predict pressure from observed velocity fields [15]. Furthermore, a novel hydro-elastic reduced 
order FSI model using ML was proposed to overcome instability issues associated with traditional 
Galerkin Projection method [15]. These works motivated the researchers to use ML to significantly 
decrease the computational cost in traditional FSI analysis. 

In this analysis we use Deep learning method to predict the structural behaviors of a L-Shaped 
bend based on FSI analysis at different inlet flow rate, for the different upper as well as lower 
length and construction material. 
Materials and methods  
For the current study we use a L-shaped bend with the dimension of a 10 mm diameter, 25mm 
upper length and 50mm lower length with a fillet radius of 5 mm at the bent given by figure 1.  

 
Figure 1: Dimension of L-Shaped Bent for FSI analysis 

 
The FSI is achieved performing CFD analysis at first and then static structural analysis with 

pressure, temperature distribution as an external load. This FSI analysis is carried out for 15 
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different structural material (namely, SS 304, Alloy Steel, Plain Carbon Steel, ductile Iron, Grey 
Cast Iron, 1060 Aluminum Alloy, Aluminum Bronze, Brass, Copper, Manganese Bronze, 
Magnesium Alloy, Monel(R) 400, ABS, Nickel and PET) and a database is created by varying 
different upper, lower arm lengths and for different materials. 

 
Figure 2: Algorithm for Investigating the FSI using Machine Learning 

 
This database is use as input to the machine learning algorithm (KNN-Regressor) in python and 

with that the ML model will be able to predict the Stress and Displacement of bend for unknown 
material (alloy) by providing Young’s Modulus and Poisson’s ratio. Figure 2 explains the ML 
algorithm to predict the FSI results for the L-shaped bend with the of a flow chart. The predictor 
and response is selected and split in training and testing datasets using test_train_split python 
function. Training data is fed to KNN Regressor with 1 neighbour and then training and testing 
RMSE (Root Mean Squared Error) is calculated. If the RMSETest < RMSETraining then the model 
can be used for making prediction on new sample and if RMSETest > RMSETraining then the number 
of neighbors is increased until RMSETest < RMSETraining. Now, the Stress and displacement of the 
bend is obtained with the new sample in the same sequence as that of predictor. 
Results and discussion  
To begin the FSI analysis the CFD simulation is done with the following conditions using 
SOLIDWORKS Flow simulation software: 
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Table 1: CFD simulation parameters 

SL NO. PARAMETER VALUE 
1. Fluid Property Water (20.5 oC, 1 atm) 
2. Inlet velocity 1m/s, 2m/s 
3. Outlet Condition 1 atm (abs) 
4. Surface Roughness 0 micrometre 
5. Wall Condition Adiabatic 
6. Mesh  15008 

This Pressure distribution obtained for the pipe at the particular condition is imported to 
SolidWorks Simulation software, and constraining the upper length of the bend while keeping the 
lower length free, the static, steady-state simulation is executed with figure 2 showing fluid 
pressure distribution and Von-Misse Stress for 1m/s of fluid inlet condition and AISI SS 304 as 
pipe material. It is evident from the figure that the maximum fluid pressure is at the bent but for 
the static stress it is maximum at the fixed geometry and minimum at the free end with accounting 
the same fluid pressure distribution as external load in static stress analysis. 

 
    (a)      (b) 

Figure 2: Schematic diagram of CFD simulation (a. pressure distribution at 1m/s velocity input) 
and the respective static structural analysis (b. Von-Mises Stress distribution with the external 

load as pressure distribution from CFD simulation) 
Table 2 shows the meshing result for static stress analysis for the initial geometry (i.e. upper 

length 25mm and lower length 50mm). 
 

Table 2: Meshing result for static structural analysis 

Static Structural Meshing Result 
Mesh Type Solid Mesh 
Mesher Used Blended curvature-based mesh 
Max Element size 1.14408mm 
Min Element size 0.381356mm 
Total Nodes 26056 
Total Elements 12946 
Max Aspect Ratio 6.0982 

 
Figure 3 shows the variation of displacement for different material at 1m/s inlet velocity (figure 

3 (a)) and the displacement for different inlet velocities with SS 304 and it can be seen that as the 
length increases the displacement also increases not linearly but quadratically (different quadratic 
function for different material). 
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    (a)      (b) 

Figure 3: Variation of displacement with upper arm length for different material (a), and for 
different inlet velocities with SS 304 material (b). 

Figure 4 shows the variation in displacement with change in lower arm length for different 
materials as well as for different inlet velocities also. And it is evident from figure 3 and 4 that at 
inlet velocity of 3 m/s the pipe with SS304 goes to the plastic deformation (which is shown in 
figure 5) hence it is eliminated from inclusion in the database for Machine Learning predictions. 

From figure 3 and 4 it is also concluded that the maximum and minimum displacement for 
Magnesium Alloy and Carbon Steel for both the cases i.e., upper arm length as well as lower arm 
length. The database is created by varying materials of construction (15 materials, namely 
Young’s Modulus and Poisson’s ratio), upper length (25-100mm) and lower length (50-150mm) 
and the respective Stress, Stain, Displacement. Figure 6 shows a snapshot of the database with 
first 5 data points. 

As for KNN Regression Machine learning method the input i.e. Predictors should be a 
numerical value so the we need to exclude the material column. Hence the predictors are “uplength, 
lowerlength, YM, PR and velocity” while the response for the model are “Displacement1 and 
Stress2”. 

 
   (a)       (b) 
Figure 4: Variation of displacement with lower arm length for different material (a), and for 

different inlet velocities with SS 304 material (b). 
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    (a)      (b) 
Figure 5: Variation in stress with (a) change in upper arm length, (b) change in lower arm 

length for SS304 
 

 
Figure 6: Snapshot of the database with first five data points for Jupiter notebook 

𝑋𝑋 = {𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢ℎ, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ,𝑌𝑌𝑌𝑌,𝑃𝑃𝑃𝑃,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉} 
𝑌𝑌 = {𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2} 

In order to determine the best value of nearest neighbours using for loop the prediction with 
neighbours in range of 1 to 10 is executed and the neighbour with least Mean Absolute Percentage 
Error (MAPE) is chosen. Figure 7 shows the values of MAPE with different neighbours and 
according to this the nearest neighbour of 4 is chosen for our model. Taking KNN Regressor with 
4 Nearest-Neighbours the testing and the training MAPE and R2 Value is shown in table 3 and 
from that it is evident that our ML model is a very good match for the current scenario and will 
show a very good prediction. 

 
Table 3: Training and Testing MAPE and R2 Value with 4 neighbour KNN Regressor 

Training Testing 
MAPE 0.11 MAPE 0.155 
R2 Value 0.9848 R2 Value 0.9769 

 



Advanced Topics in Mechanics of Materials, Structures and Construction - AToMech1-2023 Materials Research Forum LLC 
Materials Research Proceedings 31 (2023) 204-211  https://doi.org/10.21741/9781644902592-22 
 

 
246 

 
Figure 7: Mean Absolute Percentage Error (MAPE) for different neighbours. 

 
Based on the accuracy of the KNN- Regression model a plot is created showing the comparison 

between original and the predicted values of stress and displacement for ABS material and keeping 
upper length as constant at 50mm as shown in figure 8 and the results are quite impressive. 

 
Figure 8: Displacement and Stress comparison between Original and Predicted values for ABS 

material keeping upper arm length constant at 50mm. 
Conclusion 
As the L-shaped bend suffer high mechanical stress and deformation due to high fluid momentum 
and in order to determine the FSI using ML model a database is required for the different model 
to learn and do the prediction without the further use of simulation. For achieving this goal, the 
KNN Regression model is selected because of its ability to predict multiple responses, in current 
case displacement and stress, while keeping the understanding and implementation of code as 
simple as possible. The FSI process and the algorithm for ML prediction is discussed earlier and a 
snapshot of the database (figure 6) is also provided. The KNN Regression model with 4 neighbours 
shows a very good fitness with the current database with training and testing R2 Value of 0.9848 
and 0.9769 respectively (table 3). And for the final evidence for the fitness of the model, figure 8 
shows the comparison between original and predicted data for a section of ABS material with the 
fluid pressure distribution of inlet condition at 1m/s and it is observed that the ML model describes 
the original data nature quiet accurately. 
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