
Advanced Topics in Mechanics of Materials, Structures and Construction - AToMech1-2023 Materials Research Forum LLC 
Materials Research Proceedings 31 (2023) 135-145  https://doi.org/10.21741/9781644902592-15 
 

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of 
this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under license by Materials 
Research Forum LLC. 

135 

Best theory diagram using genetic algorithms for composite plates  
M.A. Hinostroza1*, J.L. Mantari1,2  

1Faculty of Mechanical Engineering, National University of Engineering, Av. Túpac Amaru 210, 
Rimac, Lima, Perú. 

2Department of Science, University of Engineering and Technology (UTEC), Medrano Silva 165, 
Barranco, Lima, Peru 

Keywords: Composite Plates, Genetic Algorithm, Best Theory Diagram, Carrera Unified 
Formulation (CUF), Machine Learning 

Abstract. Composite structures offer a practical approach for many engineering applications, but 
their design is complex and can result in excessive sizing due to limitations in current modeling 
techniques. BTDs minimize the number of unknown variables in a kinematic theory for desired 
accuracy or for a fixed error in the Carrera Unified Formulation. This paper presents a method for 
computing Best Theory Diagrams (BTDs) for laminated composite plates using Genetic 
Algorithms (GA). As reported in previous papers by the authors, a multi-objective optimization 
technique using a GA is applied to build BTDs for a given structural problem. The plate models 
stresses and displacements are compared to those of a reference solution, and a plate model 
performance is quantified in terms of the number of unknown variables, the mean error and 
standard deviation of the stresses and displacements. Also, with the objective of reducing the 
computational time, a Neural-Networks (NN) was trained to reproduce the mean error and standard 
deviation of the stresses and displacements for any plate model refined from a reference plate 
model is addressed. Numerical simulations were computed for laminated composite plates with 
previously uninvestigated boundary conditions and compare computational time for BTD 
calculation. The preliminary results show that the use of multi-objective GA plus NN method 
reduces considerably the computation time to build BTDs. 
Introduction 
To accurately predict stress distributions in modern composite structures, appropriate modeling 
formulations are necessary to account for their complex mechanical behavior, including both 
normal and transverse stress components. It is essential to have analysis tools that balance accuracy 
with computational efficiency. Consequently, the literature contains numerous articles on high-
order models for composite structures [1]. The present work is embedded in the framework of the 
Carrera Unified Formulation (CUF). According to CUF, the displacement field for plate analysis 
is defined as an expansion of the thickness coordinate [2]. High-order theories are beneficial for 
response analysis, but they come at the cost of high computational expense. To address this issue, 
Carrera and Petrolo [3] developed the AXiomatic/Asymptotic method, which identifies 
unnecessary terms in a plate model for a specific output, such as displacement or stress. By 
eliminating these terms, a refined plate model with fewer unknown variables can be obtained 
without sacrificing accuracy. However, these refined plate models are problem-specific. Carrera 
and Miglioretti [4] extended the AXiomatic/Asymptotic method to create the Best Theory Diagram 
(BTD), which evaluates all combinations of terms in a full plate model. The BTD represents 
refined plate models in a plot that shows the number of terms versus the error. The "best" refined 
plate models with the least error for a fixed number of terms form the BTD.  

Machine learning techniques such as neural networks and genetic algorithms have become 
increasingly popular in recent years for solving problems that involve a large number of variables, 
high levels of uncertainty, and rapidly changing behavior. These techniques have been applied in 
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numerous fields, including computational mechanics, where they have been used to develop 
multiscale elements and data-driven solvers. In Ref. [4], a genetic algorithm was employed to 
construct Best Theory Diagrams (BTDs) with lower computational cost. Yarasca et al. [6] 
introduced a Multi-objective Optimization Method to create BTDs for sandwich plates, and later 
Mantari et al. [7] investigated the use of neural networks to reduce computation time in BTD 
construction. 

In this study, a method for computing Best Theory Diagrams (BTDs) for composite plates using 
Genetic Algorithms (GA) is presented. This study uses mathematical formulation and benchmarks 
from prior research [7], with a new GA technique [8] and cost function for optimization. The study 
will perform numerical simulations for laminated composite plates with previously uninvestigated 
boundary conditions and compare computational time for BTD calculation. Also, the use of Neural 
Network models combined with Genetic algorithms is investigated. 
Preliminaries 
The Best Theory Diagrams (BTDs): 
The construction of reduced models through axiomatic/asymptotic methods, can lead to a diagram 
in which, for a given problem, each reduced model is associated with the number of active terms 
and its error computed on a reference solution. This diagram, Fig.1, allows editing an arbitrary 
given theory to get a lower number of terms for a given error, or to increase the accuracy while 
keeping the computational cost constant. Considering all the reduced models, it is possible to 
recognize that some of them provide the lowest error for a given number of terms. These models 
represent a Pareto front for this specific problem. As in Ref. [4], the Pareto front is defined as the 
best theory diagram (BTD). This curve is case-dependent since it changes for several problems, 
i.e., different materials, geometries, boundary conditions, and output parameters. If a single output 
parameter is selected (only one displacement or one component of the stress tensor), the BTD 
considers the number of active terms and the error of the selected output parameter computed on 
a reference solution. Investigations of this sort have been reported in Ref. [9]. It is worth noticing 
that, although the output parameter may be freely selected, only one at a time can be investigated. 
This latter limitation has been removed by the multi-objective BTDs proposed by Mantari et al. 
[10], where multiple output parameters can be investigated in a single analysis. 
Methodology and Proposed Algorithm 
Mathematical Model: Carrera Unified Formulation for plates: 
Figure 2 illustrates the geometry and coordinate system of a multilayered plate comprising L 
layers, where the in-plane coordinates are denoted by x and y, and the thickness coordinate is 
denoted by z. The layer number, denoted by the integer k, represents the layer's position in the 
multilayered plate, counting from the bottom to the top surface. 

 
Figure 1: Body Theory Diagram on ED4, aluminum path, a/h=2.5, Mantari et al. [10]. 
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According to CUF, the displacement field of a plate structure can be written as follows: 
 

 
Fig. 2. Plate geometry and reference system. 

 

�

𝑢𝑢𝑥𝑥(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝐹𝐹1(𝑧𝑧)𝑢𝑢𝑥𝑥1(𝑥𝑥, 𝑦𝑦) + 𝐹𝐹2(𝑧𝑧)𝑢𝑢𝑥𝑥2(𝑥𝑥, 𝑦𝑦) + ⋯+ 𝐹𝐹𝑁𝑁exp (𝑧𝑧)𝑢𝑢𝑥𝑥𝑁𝑁eqp 
(𝑥𝑥, 𝑦𝑦),

𝑢𝑢𝑦𝑦(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝐹𝐹1(𝑧𝑧)𝑢𝑢𝑦𝑦1(𝑥𝑥, 𝑦𝑦) + 𝐹𝐹2(𝑧𝑧)𝑢𝑢𝑦𝑦2(𝑥𝑥, 𝑦𝑦) + ⋯+ 𝐹𝐹𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧)𝑢𝑢𝑦𝑦𝑁𝑁𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑦𝑦)
𝑢𝑢𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝐹𝐹1(𝑧𝑧)𝑢𝑢𝑧𝑧1(𝑥𝑥, 𝑦𝑦) + 𝐹𝐹2(𝑧𝑧)𝑢𝑢𝑧𝑧2(𝑥𝑥, 𝑦𝑦) + ⋯+ 𝐹𝐹𝑁𝑁exp (𝑧𝑧)𝑢𝑢𝑧𝑧exp (𝑥𝑥, 𝑦𝑦)

 
(1) 

In compact form: 
𝒖𝒖(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝐹𝐹𝜏𝜏(𝑧𝑧) ⋅ 𝒖𝒖𝜏𝜏(𝑥𝑥, 𝑦𝑦)𝜏𝜏 = 1, 𝑧𝑧, … ,𝑁𝑁exp (2) 

where 𝒖𝒖 is the displacement vector whose components (𝑢𝑢x; 𝑢𝑢y; 𝑢𝑢z) are the displacements along 
the x, y and z reference axes. 𝐹𝐹𝜏𝜏 are the expansion functions and 𝒖𝒖𝜏𝜏 (𝑢𝑢𝑥𝑥𝜏𝜏  ; 𝑢𝑢𝑦𝑦𝜏𝜏 ;𝑢𝑢𝑧𝑧𝜏𝜏  ) are the 
displacements variables. 𝑁𝑁exp is the number of terms of the expansion. According to the equivalent 
single layer scheme, a multilayered heterogeneous plate is analyzed as a single equivalent lamina. 
In this case, 𝐹𝐹𝜏𝜏  functions can be considered as functions of z defined as 𝐹𝐹𝜏𝜏 = 𝑧𝑧𝜏𝜏−1. The number of 
unknown variables is independent of the number of plate layers. The equivalent single layer 
models are indicated as EDN, where N is the expansion order. In this paper, the ‘zig-zag’ function 
proposed is employed. The equivalent single layer models considering Murakami ‘zig-zag’ 
function are indicated as EDZN. An example of an EDZ4 displacement field is reported as: 
 

𝑢𝑢𝑥𝑥 = 𝑢𝑢𝑥𝑥1 + 𝑧𝑧𝑢𝑢𝑥𝑥2 + 𝑧𝑧2𝑢𝑢𝑥𝑥3 + 𝑧𝑧3𝑢𝑢𝑥𝑥4 + (−1)𝑘𝑘𝜁𝜁𝑘𝑘𝑢𝑢𝑥𝑥5  

𝑢𝑢𝑦𝑦 = 𝑢𝑢𝑦𝑦1 + 𝑧𝑧𝑢𝑢𝑦𝑦2 + 𝑧𝑧2𝑢𝑢𝑦𝑦3 + 𝑧𝑧3𝑢𝑢𝑦𝑦4 + (−1)𝑘𝑘𝜁𝜁𝑘𝑘𝑢𝑢𝑦𝑦5
𝑢𝑢𝑧𝑧 = 𝑢𝑢𝑧𝑧1 + 𝑧𝑧𝑢𝑢𝑧𝑧2 + 𝑧𝑧2𝑢𝑢𝑧𝑧3 + 𝑧𝑧3𝑢𝑢𝑧𝑧4 + (−1)𝑘𝑘𝜁𝜁𝑘𝑘𝑢𝑢𝑧𝑧5

 

(3) 

where 𝜁𝜁𝑘𝑘 = 2𝑧𝑧𝑘𝑘/ℎ𝑘𝑘 is a non-dimensional layer coordinate and ℎ𝑘𝑘 the thickness of the k-layer. On 
the other hand, layer-wise models can be conveniently built using Legendre’s polynomials 
expansions in each layer. Detailed description of equation derivation can be found in [7]. 
In this paper, layer-wise models are denoted by the acronym as LDN, where N is the expansion 
order. An example of LD4 layer displacement field: 

 
𝑢𝑢𝑥𝑥𝑘𝑘 = 𝐹𝐹𝑡𝑡𝑢𝑢𝑥𝑥𝑡𝑡

𝑘𝑘 + 𝐹𝐹2𝑢𝑢𝑥𝑥2
𝑘𝑘 + 𝐹𝐹3𝑢𝑢𝑥𝑥3

𝑘𝑘 + 𝐹𝐹4𝑢𝑢𝑥𝑥4
𝑘𝑘 + 𝐹𝐹𝑏𝑏𝑢𝑢𝑥𝑥𝑏𝑏

𝑘𝑘

𝑢𝑢𝑦𝑦𝑘𝑘 = 𝐹𝐹𝑡𝑡𝑢𝑢𝑦𝑦𝑡𝑡
𝑘𝑘 + 𝐹𝐹2𝑢𝑢𝑦𝑦2

𝑘𝑘 + 𝐹𝐹3𝑢𝑢𝑦𝑦3
𝑘𝑘 + 𝐹𝐹4𝑢𝑢𝑦𝑦4

𝑘𝑘 + 𝐹𝐹𝑏𝑏𝑢𝑢𝑦𝑦𝑏𝑏
𝑘𝑘

𝑢𝑢𝑧𝑧𝑘𝑘 = 𝐹𝐹𝑡𝑡𝑢𝑢𝑧𝑧𝑡𝑡
𝑘𝑘 + 𝐹𝐹2𝑢𝑢𝑧𝑧2

𝑘𝑘 + 𝐹𝐹3𝑢𝑢𝑧𝑧3
𝑘𝑘 + 𝐹𝐹4𝑢𝑢𝑧𝑧4

𝑘𝑘 + 𝐹𝐹𝑏𝑏𝑢𝑢𝑧𝑧𝑏𝑏
𝑘𝑘

 
(4) 

Finite element approximation: 
A classical Finite Element technique is used to easily deal with arbitrary shaped cross-sections. 

The generalized displacement vector is given by: 
 

𝒖𝒖𝜏𝜏(𝑦𝑦) = 𝑁𝑁𝑖𝑖(𝑦𝑦)𝒒𝒒𝜏𝜏𝑖𝑖  (5) 
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where 𝑁𝑁𝑖𝑖 are the shape functions and 𝑞𝑞𝜏𝜏𝑖𝑖 is the nodal displacement vector: 
𝒒𝒒𝜏𝜏𝑖𝑖 = �𝑞𝑞𝒖𝒖𝑒𝑒𝜏𝜏𝜏𝜏𝑞𝑞𝑢𝑢𝑦𝑦𝜏𝜏𝜏𝜏𝑞𝑞𝑢𝑢𝑧𝑧𝜏𝜏𝜏𝜏�

𝑇𝑇
 (6) 

For the sake of brevity, the functions are not listed here, they can be found in Carrera 
Formulation. The functions are defined in the natural coordinates and transpose in the real 
coordinate in according with the isoperimetric formulation. The stiffness matrix of the elements 
and the external loadings are obtained via the Principle of Virtual Displacements (PVD): 

𝛿𝛿𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡 = � 
𝑉𝑉
�𝛿𝛿𝜺𝜺𝑝𝑝𝑇𝑇𝝈𝝈𝑝𝑝 + 𝛿𝛿𝜺𝜺𝑖𝑖𝑇𝑇𝝈𝝈𝑖𝑖�𝑑𝑑𝑑𝑑 = 𝛿𝛿𝐿𝐿𝑒𝑒𝑥𝑥𝑡𝑡 

(7) 

Where 𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡 stands for the strain energy, 𝐿𝐿𝑒𝑒𝑥𝑥𝑡𝑡 is the work of external loadings and δ stands for 
virtual variation. The PVD for a multilayered plate structure reads, a detailed derivation of equation 
can be found n [7]: 

𝛿𝛿𝒒𝒒𝑘𝑘𝑘𝑘𝑘𝑘 :           𝑲𝑲𝑘𝑘𝜏𝜏𝑘𝑘𝑖𝑖𝑘𝑘𝒒𝒒𝑘𝑘𝜏𝜏𝑖𝑖 = 𝑷𝑷𝑘𝑘𝑘𝑘𝑘𝑘  (8) 

where 𝑷𝑷𝑘𝑘𝑘𝑘𝑘𝑘 is a 3 x 1 matrix, called fundamental nucleus of the external load. 𝒒𝒒𝑘𝑘𝜏𝜏𝑖𝑖 and 𝛿𝛿𝒒𝒒𝑘𝑘𝑘𝑘𝑘𝑘are 
the nodal displacements and its variation respectively. 
 
Proposed Genetic Algorithm Optimization Method: 

Refined plate theories provide improved accuracy and the ability to detect non-classical effects, 
but the higher number of displacement variables required leads to higher computational costs. To 
minimize the computational cost required to construct a Best Theory Diagram (BTD), a genetic 
algorithm (GA) is employed. The GA evaluates a set of random refined models, referred to as the 
population, over multiple generations until the final generation's BTD converges. The 
Axiomatic/Asymptotic method, developed by Carrera and Petrolo [3], addresses this issue by 
enabling the identification of the role of each variable in computing a specific displacement stress 
output variable. This method involves evaluating every potential plate model combination 
resulting from deactivating each term. Hence, the number of evaluations needed is potential, 2𝑀𝑀 , 
where M the number of deactivated terms. A graphical notation is introduced to represent the 
results. This consists of a table with three rows, and some columns equal to the number of the 
displacement variable used in the expansion. As an example, an LD4 model for a two-layer plate 
is shown in Table 1 (full model). Table 1 also shows a refined model in which the term in the first,  
where, squared symbols (■) means Non-deactivable term (due to material continuity), empty-
triangle (△) is Inactive term, and filled-triangle (▲) is active term. 

 
Table 1: Example model representation. 

Full model representation Reduced model representation 

■ ▲ ▲ ▲ ■ ▲ ▲ ▲ ■ ■ ▲ ▲ ▲ ■ △ ▲ ▲ ■ 

■ ▲ ▲ ▲ ■ ▲ ▲ ▲ ■ ■ ▲ ▲ ▲ ■ ▲ ▲ ▲ ■ 

■ ▲ ▲ ▲ ■ ▲ ▲ ▲ ■ ■ △ ▲ ▲ ■ ▲ ▲ ▲ ■ 

 
For multiple displacement/stress outputs, each output parameter has a given error which is 

computed simultaneously. The optimization method objectives functions are the number of terms 
in the refined models, the mean error and the standard deviation of the stresses and displacements. 
After the Axiomatic/Asymptotic method is employed, the mean error and the standard deviation 
is replaced by a new objective function denoted by %𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢. %𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢 is the sum of the mean 
error and the standard deviation.  In this study the error is defined as:  
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% Error = 100𝑊𝑊𝑟𝑟
∑  𝑁𝑁𝑒𝑒
𝑖𝑖=1 �𝑄𝑄

𝑖𝑖 − 𝑄𝑄𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖 �
𝑚𝑚𝑚𝑚𝑥𝑥�𝑄𝑄𝑟𝑟𝑒𝑒𝑟𝑟� ⋅ 𝑁𝑁𝑝𝑝

 
(9) 

where 𝑊𝑊𝑟𝑟 is the vector of weights for the new optimization function, as has the value of:  

𝑊𝑊𝑟𝑟 = �2, 𝑖𝑖𝑖𝑖 𝐸𝐸 = 1,2,3
1, 𝐸𝐸𝑜𝑜ℎ𝑒𝑒𝐸𝐸𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒  

This weight gives priority to the 𝑢𝑢𝑥𝑥, 𝑢𝑢𝑦𝑦 and 𝑢𝑢𝑧𝑧 error:  The used of weighs to improve estimations 
was proposed in [11]. 

In this way, a 2-dimensional Pareto front, the so-called BTD, is built selecting the best plate 
theories considering the objective functions: number of terms and %𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢. It is important to 
remark that %𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢 is not exactly the upper limit error of the output parameters, but an indicator 
employed for comparative purposes. 

In this study, the Kerry-Lothrop GA from [8] is utilized due to its demonstrated high 
performance across various research areas. Typically, the classical approach involves converting 
all variable types to binary design variables, either explicitly or through a user interface. This 
conversion process was implemented using the Matlab Genetic Algorithm Optimization Toolbox. 
The Multi-objective optimization technique flowchart is presented in Fig. 3. In this procedure, the 
most time-consuming step is the FEA of the refined plate models. If the number of generations 
and/or the population size is too large, the procedure can become unviable.  For this reason, a 
Neural-Network (NN) is implemented to replace the FEA, as was addressed in Yarasca et al. [7]. 
The NN consists of simple processing units, the neurons, and directed, weighted connections 
between those neurons. The neurons are connected to different layers. Once the number of layers 
and neurons per layer are set, the NN starts the training procedure. The training is an iterative 
process. To initiate the training of a neural network (NN), a set of initial weights is randomly 
selected in the first iteration. A fixed number of random cases with predetermined inputs and 
outputs are used to compute the weights. Next, the NN output for the given inputs is compared to 
the desired outputs, and the errors are then propagated back to the NN to adjust the weights. This 
process continues for each iteration until the NN reaches an acceptable global error and converges. 
In the current study, a population of 1000 and 100 generations were used for the genetic algorithm 
(GA), and the NN utilized 2000 training samples. The NN architecture consisted of 15 neurons 
with three layers for EDZ4 models and four layers for LD4 models. 
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Figure 3: Multi-objective optimization technique flowchart, using FEA and Neural Networks 
 

Numerical Results and Discussion: 
This section presents the results obtained from the new multi-objective optimization technique. 

A transverse uniformly distributed pressure was applied at the top surface of a square composite 
plate with equal side lengths (a = b) and thickness (h), as shown in Figure 2. The study focused 
on a laminated composite plate subjected to three different sets of boundary conditions: simple 
support on all four sides, clamped on all four sides, and clamped-free with opposing sides having 
the same boundary condition (CFCF). Due to space limitations, this paper only presents the results 
for CFCF, while the complete set of results will be presented in a forthcoming publication.The 
reduced models are developed for the displacements 𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦,𝑢𝑢𝑧𝑧, and the stresses 
𝜎𝜎𝑥𝑥𝑥𝑥,𝜎𝜎𝑦𝑦𝑦𝑦,𝜎𝜎𝑧𝑧𝑧𝑧 , 𝜏𝜏𝑥𝑥𝑦𝑦, 𝜏𝜏𝑥𝑥𝑧𝑧 and 𝜏𝜏𝑦𝑦𝑧𝑧. The following normalized quantities are defined for the 
displacements and stresses: 

 

𝑢𝑢�𝑥𝑥 =
𝑢𝑢𝑥𝑥 ⋅ 𝐸𝐸2𝑘𝑘=1 ⋅ ℎ2

�̅�𝑝𝑧𝑧 ⋅ 𝑚𝑚3
,𝑢𝑢�𝑦𝑦 =

𝑢𝑢𝑦𝑦 ⋅ 𝐸𝐸2𝑘𝑘=1 ⋅ ℎ2

�̅�𝑝𝑧𝑧 ⋅ 𝑚𝑚3
,𝑢𝑢�𝑧𝑧 =

𝑢𝑢𝑧𝑧 ⋅ 100 ⋅ 𝐸𝐸2𝑘𝑘=1 ⋅ ℎ3

�̅�𝑝𝑧𝑧 ⋅ 𝑚𝑚4

𝜎𝜎�𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 =
𝜎𝜎𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦

�̅�𝑝𝑧𝑧 ⋅ (𝑚𝑚/ℎ)2
,𝜎𝜎�𝑧𝑧𝑧𝑧 =

𝜎𝜎𝑧𝑧𝑧𝑧
�̅�𝑝𝑧𝑧

, 𝜏𝜏�̅�𝑥𝑦𝑦 =
𝜏𝜏𝑥𝑥𝑦𝑦

�̅�𝑝𝑧𝑧 ⋅ (𝑚𝑚/ℎ)2
, 𝜏𝜏�̅�𝑥𝑧𝑧,𝑦𝑦𝑧𝑧 =

𝜏𝜏𝑥𝑥𝑧𝑧,𝑦𝑦𝑧𝑧

�̅�𝑝𝑧𝑧 ⋅ (𝑚𝑚/ℎ)
,
 

(10) 
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where k =1 identifies the bottom layer; 𝑢𝑢�𝑥𝑥 and 𝜏𝜏�̅�𝑥𝑧𝑧 are calculated at x=0, y=b/2; 𝑢𝑢�𝑦𝑦 and 𝜏𝜏�̅�𝑦𝑧𝑧 are 
calculated at x=a/2, y=0; 𝑢𝑢�𝑧𝑧 ,𝜎𝜎�𝑥𝑥𝑥𝑥,𝜎𝜎�𝑦𝑦𝑦𝑦 and 𝜎𝜎�𝑧𝑧𝑧𝑧 are calculated at x= a/2, y=b/2 and 𝜏𝜏�̅�𝑥𝑦𝑦 is calculated 
at x=y=0. The stresses 𝜏𝜏�̅�𝑥𝑧𝑧, 𝜏𝜏�̅�𝑦𝑧𝑧 and 𝜎𝜎�𝑧𝑧𝑧𝑧 obtained from the EDZ4 and LD4 plate model were 
computed via the indefinite equilibrium equations of 3D elasticity. In this paper, an LD4 model 
was employed as the reference solution. Also, comparisons with the work presented at Mantari et 
al. [7] are addressed. The results reported in Refs. [12] show that the LD4 plate model is in good 
agreement with the three-dimensional exact elasticity result. The GA used here was designed by 
Lothrop (2003) and suffered only minor changes in order to be applied to this problem. The 
floating-point representation was chosen for all variables. Those parameters that were problem 
specific are provided in Table 2. 

 
Table 2: Considered genetic algorithms parameters. 

Population 1000 
Generations 30 
Xover 70% for 30 pairs 
Mutate 5% 

Laminated Plates:  
Laminated composited plates with different length-to-thickness ratios, boundary conditions, and 
lamination sequences were investigated using an EDZ4 plate model. In the examples considered, 
the individual laminae were considered of equal thickness and the following set of material 
properties was used for each lamina: 𝐸𝐸𝐿𝐿/𝐸𝐸𝑇𝑇 = 25;𝐺𝐺𝐿𝐿𝑇𝑇/𝐸𝐸𝑇𝑇 = 0.5; 𝐺𝐺𝑇𝑇𝑇𝑇/𝐸𝐸𝑇𝑇 = 0.2; 𝜈𝜈𝐿𝐿𝑇𝑇 = 𝜈𝜈𝑇𝑇𝑇𝑇 =
0.25. The length-to-thickness ratio a/h=5 and lamination sequences 0/90, and the combinations of 
boundary conditions CFCF, were studied. The BTDs for the case studies are presented in Fig. 4.  
From this plot as was expected, GA+NN is faster but has the drawback of being a little more errors 
in the models optimized. The refined plate model’s accuracies are reported in Table 3. Selected 
displacements and stress through the thickness distributions are shown in Figs. 5. The notation 
used is the following: the refined models built are indicated as N-hybrid refined model (N-HRM); 
where N is the number of variables in the HRM. The reference solution (in this case, LD4) is 
included for comparison purposes. To verify the correct convergence of the GA and NN to the 
Axiomatic/Asymptotic method’s BTD, a comparison between the different BTDs is shown in Fig. 
4. The BTD denoted by AAM (Axiomatic/ Asymptotic method) is built evaluating every refined 
model from the full EDZ4 plate model. As can be observed, the BTDs obtained are in complete 
agreement. Fig. 4 shows that the NN precision improves for high length-to-thickness and simply 
supported boundary conditions. 

For the sake of reproducibility, the selected refined plate models from the BDTs are reported in 
Tables 3. The number of active terms is indicated by 𝑀𝑀𝐸𝐸. This is expected since for high length-
to-thickness ratio and simply supported boundary conditions, the number of refined plate models 
with adequate results in the population increases. Therefore, the NN prediction improves because 
of the reduction in population performance variability. For that reason, hereafter only low length-
to-thickness ratios are investigated.  
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Figure 4. BTDs for laminated composite plate, 0/90, a/ h=5, CFCF. 

 
Table 3: Refined EDZ4 models, laminated composite plate, 0/90, a/h=5, CFCF. 
𝑀𝑀𝐸𝐸=15/27 𝑀𝑀𝐸𝐸=21/27 

■ ▲ ▲ △ ■ △ ▲ △ ■ ■ ▲ ▲ ▲ ■ △ ▲ ▲ ■ 

■ ▲ △ △ ■ ▲ △ △ ■ ■ ▲ △ ▲ ■ ▲ △ △ ■ 

■ ▲ △ △ ■ △ △ △ ■ ■ ▲ ▲ △ ■ △ ▲ ▲ ■ 

𝑀𝑀𝐸𝐸=24/27 𝑀𝑀𝐸𝐸=26/27 

■ ▲ ▲ ▲ ■ ▲ △ ▲ ■ ■ ▲ ▲ ▲ ■ ▲ ▲ ▲ ■ 

■ ▲ ▲ △ ■ ▲ ▲ △ ■ ■ ▲ ▲ ▲ ■ ▲ ▲ △ ■ 

■ ▲ ▲ ▲ ■ ▲ ▲ ▲ ■ ■ ▲ ▲ ▲ ■ ▲ ▲ ▲ ■ 

 
The NN can predict the results in terms of mean error and standard deviation with acceptable 

accuracy. Concerning the EDZ4 plate model, Fig. 5 and Table 4 show that EDZ4 refined plate 
models are insufficient to simulate laminated plates with CFCF boundary conditions and 
asymmetric laminations such as 0/90. The NN implementation makes the multi-objective 
optimization method practical in terms of computational cost. In this study, the computation cost 
for the GA population presented in Table 2 and FEA solution are presented in Table 5. In this table 
for 𝑀𝑀𝐸𝐸 = 5 is 16.1 minutes and 𝑀𝑀𝐸𝐸 = 15 is 23.3 minutes. The computational time is reduced when 
NN, The NN can predict the results in terms of mean error and standard deviation with acceptable 
accuracy, the Neural Network herein used in a NN trained to reproduce the mean error and standard 
deviation of the stresses and displacements, the mode is composed by set to 15 neurons with 3 
layer. The new computation time are for  𝑀𝑀𝐸𝐸 = 5 is 8.2 minutes and 𝑀𝑀𝐸𝐸 = 15 is 9.6 minutes. 
Table 5 also shows a comparison of the computational cost between the present work and the 
method presented in Mantari et al. [7]. From this table, it is possible to observe a better 
performance of the presented work. However, it is important to notice that this method computes 
one theory for a determined number of active terms, while the Mantari et al. [7] method performs 
all the theories at once. 
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Figure 5: Selected displacement and stresses distribution for laminated composite plate, 0/90, 
a/h=5,CFCF. 

 
Table 4: Error percentages of the refined EDZ4 models, laminated plate, 0/90, a/ h=5, CFCF. 
a/h=5 
CFCF 
𝑀𝑀𝐸𝐸 𝑢𝑢�𝑥𝑥 𝑢𝑢�𝑦𝑦 𝑢𝑢�𝑧𝑧 𝜎𝜎�𝑥𝑥𝑥𝑥 𝜎𝜎�𝑦𝑦𝑦𝑦 �̅�𝜏𝑥𝑥𝑦𝑦 �̅�𝜏𝑥𝑥𝑧𝑧 �̅�𝜏𝑦𝑦𝑧𝑧 𝜎𝜎�𝑧𝑧𝑧𝑧 

5 0.853 1.299 0.717 1.031 1.619 1.752 1.164 3.785 3.007 
7 0.741 0.062 0.128 1.064 0.138 1.688 1.221 1.641 2.401 
10 0.360 0.013 0.033 0.157 0.024 1.009 0.217 0.489 1.628 
12 0.176 0.009 0.021 0.101 0.011 0.348 0.158 0.488 0.499 
15 0.135 0.000 0.000 0.002 0.000 0.226 0.002 0.001 0.003 

 
Table 5. Computation time for laminated composite plate, 0/90, a/ h=5, CFCF 

Number of active terms GA+FEA GA+NN 

𝑀𝑀𝐸𝐸=5 16.1 min 8.2 min 

𝑀𝑀𝐸𝐸=15 23.3 min 9.6 min 

Mantari et al. [7], raw 90 min 6.71 min 

Mantari et al. [7], optimized 90 min 4.42 min 
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Conclusions and Future work 
In this article, we describe the development of equivalent single layer and layer-wise plate models 
for laminated composite plates, which offer 3D-like accuracy and optimized computational cost. 
The Best Theory was built using the axiomatic/asymptotic method, a genetic algorithm, and the 
neural network, with output parameters including all displacements and stresses. By replacing 
finite element analysis with a neural network, computational time is drastically reduced. Our 
results present the BTDs, displacements and stresses for a 0/90 Laminated composite plate CFCF 
boundary condition. The main conclusion drawn from our findings is that the implementation of 
the neural network significantly reduces the computational time required to build BTDs. Also, this 
study proposes a different GA algorithm [8] with new optimization function, using weights, than 
in Mantari [7], and better performance in computational cost was found.  Future work will be 
concentrated is carry out numerical simulations for more benchmarks, different boundary 
conditions and different materials.  
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