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Abstract. This work presents a comparison the results of the real deformation of a four-segment 
fly rod used to the feeder method with the results obtained from the theory and the FEM. The 
experiment of bending comprises preparation of the measuring path, in which the real fly rod is 
loaded by a series of forces subsequently changing both magnitude and inclination. The FEM 
model of the fly rod is based on the beam element and the variation of the cross-section is subjected 
to stepping approximation. The theoretical model takes advantage of the classical elliptic integral 
formulation applied to describe full curvature problem of long flexible bars. Dominant errors 
between the experimental data and numerical results come from essential difficulties in accurate 
measurement of the wall thickness as well as uncertainty of fibre carbon configuration. 
Introduction 
Fly rods, independently of their destination, are designed as double-, triple- or four-segmental or 
alternatively as telescopic ones. Recently, the majority of fly rods is made of carbon fibres, whereas  
glass fibre fly rods represent rather lower quality goods. However, in case of many carbon fibre 
fly rods, where the tip segment does not play essential role in carrying of load but serves only for 
signalization that a fish swallows fish hook, this is so called fly rod with the vibrating tip segment, 
the tip segment made of glass fibre is used just for to assure sufficient stiffness. 

Generally, fly rods of all kinds work in elastic range, where large bending is dominant state, 
whereas torsion or shear effects are negligible. Bending fly rods subjected to large deformations 
ought to exhibit high strength as well elasticity range. Moreover, the good quality fly rods should 
deform following special scheme: the deformation of tip segment resembles approximately 
parabola which extends towards hand grip segment according to an increasing load, and in case of 
advanced deformations may exhibit straightening effect. 

Fly rods usually dedicated for feeder method of fishing are from 2.7m to 4.0m in length and 
serve for throw a masses from several grams to even 250g. The most frequent lengths of such rods 
are equal to 3.3m, 3.6m and 3.9m.  

From the structure theory point of view, the most essential problem consists in description of 
fly rod deformation under loading. In case when the fly rod is treated as beam/rod element, an 
adequate description of deformation requires: consideration of nonlinear formula for finite 
curvature and simultaneously lack of prismatic shape of segments, as well as nature of loading, 
which may change both magnitude and direction. Associated problems known in literature of 
structural mechanics are as follows: finite displacements of beams – see [4], post-critical 
compression of column – see [5] and bending of beam of finite curvature subjected to an inclined 
force – see [1]. In all cases solutions are expressed by elliptic integrals and deal with prismatic 
beam element under concentrated load, which direction stays fixed in the space (force directed to 
a pole). Fundamental difficulty in adaptation aforementioned solutions to analysis of rod 
deformation consists in lack of prismatic shape of fly rod segments, which turn out to be conical. 
As consequence, engineer designing fly rod has at least two approaches to the problem: either to 
treat fly rod as beam/rod of step like cross-section – see section on nonlinear theory of bending, or 
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to take advantage of one of commercial Finite Element packages – see ANSYS Workbench model 
presented in further section.  
Experimental Investigations 
Test stand, shown in Fig. 1, comprises a stand supporting the fly rod, inclined to the ground with 
60o, and a stand with grip to attach of a cable pulley, serving to thread a fishing line. White rope 
determines horizontal line necessary for setting up position of the cable pulley. Markers located 
subsequently at 2, 4, 6, 8 and 11m away form a hand grip of fly rod are fixed by use of a measuring 
tape. Both the stand of fly rod and the stand of cable pulley are made of an oak wood elements 
joined by steel L profiles. Loading is realized by series of normalized weights 100, 200, 500 and 
1000g. 

 

 
Fig. 1. Scheme of test stand 

 
Experiment consists in registration by camera series of fly rod deformations referring to 

different combinations of load magnitude and distance measured with regard to the hand grip.  
Initial test assumes following parameters: distance equal to 1.0 m, series of loading 100, 200, 

300, 500, 800, 1000, 1300, 1500g and angle of inclination with respect to the ground equal 70o. 
This reflects final phase of towing when a fish is situated almost at the fisherman foot. 
Unfortunately, this test can be done for maximum weight 800g, since weight 1000g leads to failure 
of the fly rod. Aforementioned, negative result of initial test gives hints to the proper test 
characterized by following parameters: magnitude of angle of inclination with respect to the 
ground is decreased to 60o, minimal distance is increased to 2.0m. 

Series of fly rod deformations under selected load magnitudes equal to 500, 1000 and 1500g  
referring to subsequent distances 11, 8, 6, 4 and 2 m are presented in Fig. 2. 
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Fig. 2. Bending test of fly rod for selected load magnitudes equal to 500, 1000 and 1500g 

 

Nonlinear Theory of Bending 
Below the approach taken from monograph [1] for four-segment cantilever beam of step-like 
constant stiffness under concentrated force is presented – see Fig. 3.  

 

 
Fig. 3. Scheme of four-segment cantilever beam of step-like constant stiffness 

 
Format of differential equation including magnitude of bending moment in current point (x,y) 

is following   

EIi
dψ
ds

=M=P1(xd– x)+ P2(yd– y), (1) 

where P1=P sin α and P2=P cos α are projections of force P according to subsequent axes, EIi 
denotes bending stiffness of  i-th segment, whereas s stands for coordinate measured along the arc 
– see window in Fig. 3. After differentiation with respect to s 

EIi
d2ψ
ds2 =– P1 cos ψ – P2 sin ψ, (2) 
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and introducing new variables 

u= s L,⁄ θ=ψ+α, (3) 

one can get 

dθ
du

=L dψ
ds

, d2θ
du2

d
du

�dψ
ds

� L= d
ds

�dψ
ds

� L ds
du

= d2ψ
ds2 L2, d2ψ

ds2 = 1
L2. (4) 

The right hand side of Eq. (2)  can be rewritten as  

P �P1
P

cos ψ + P2
P

sin ψ� =P( sin α cos ψ + cos α sin ψ )=P sin(ψ+α) =P sin θ, (5) 

whereas equation (2) itself takes format  

d2θ
du2 +ci sin θ =0 , (6) 

where ci=
L2p
EIi

=L2ki
2. It is essential to emphasize here, that Eq. (6) is in fact the system of 4 

nonlinear differential equations of second rank, which requires 8 conditions: 2 boundary conditions 
+ 3 × 2 = 6 continuity conditions. Integration starts from 4-th tip segment using boundary condition 

ψ(s=0)=0    and    dψ
ds

�
s=0

=0          or       θ(u=0)=α    and      dθ
du

�
θ=ψ4+α

=0 , (7) 

next multiplication of Eq. (6) for  i=4  by 2dθ and integration using boundary condition Eq. (7) 
yields 

dθ
du

=�2c4[ cos θ − cos(ψ4+α) ] . (8) 

First of Eq. (3) yields 

du= ds
L

= dθ
�2c4[cos θ −cos(ψ4+α)]

 , (9) 

hence integration with respect to ds from  θ=α to θ=ψ3+α gives  

L4= ∫ dsψ3+α
α = L

�2c4
∫ dθ

�cos θ −cos(ψ4+α)
ψ3+α

α  , (10) 

or in equivalent format 

L4
L

= 1
�2c4

�– ∫ dθ

�cos θ – cos�ψ4+α�

α
0  + ∫ dθ

�cos θ – cos�ψ4+α�

ψ3+α
0 � . (11) 

Since cos x =1– 2sin2x
2 , therefore Eq. (11) can be written down as sum of two elliptical integrals 

of first kind 

L4= 1
k4

[F(p4) − F(p4, m4)] , (12) 
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where m4=sin–1 � 1
p4

sin α
2
� and √c4=Lk4. 

In analogous manner, solutions for segment 3, 2 and 1 get format 

Li= 1
ki

[F(pi,ζi)– F(pi, ζi-1)] , (13) 

where sin ζi-1 = 1
pi√2

  and sin ζi = 1
pi

�1+ sin (ψi+α)
2 . 

It is convenient to compare number of equations and unknowns. There are 4 nonlinear equations 
(6) involving 5 unknowns (ψ4, p4,  p3, p2, p1), hence numerical procedure has to be preceded by 
trial/error estimation of 𝜓𝜓4. When magnitudes of (ψ4, p4, p3, p2, p1) are known next components 
of displacement vector can be calculated for each segment. Below solution for segment 4 (tip 
segment) is only demonstrated.  

The infinitesimal length of arc according to Eq. (9) takes format  

ds= dϕ

k4�1−p4
2 sin2 ϕ

 , (15) 

and after integration we get solution being the product of trigonometric functions and elliptical 
integrals of first and second kind 

x= cosα[F(p4,m4)–F(p4,n4)+2E(p4,n4)-2E(p4,m4)]+2p4 sin α( cos m4–cos n4)
k4

 , (16) 

where n4=sin–1 � 1
p4

sin ψ+α
2 �. 

In similar way 

dy=ds cos ψ=ds sin(θ– α) = cos α
k4

2p4 sin ϕ dϕ – sin α
k4

� dϕ

�1−p4
2sin2 ϕ

– 2p4
2sin2 ϕ dϕ

�1−p4
2sin2 ϕ

�, (17) 

finally leading to  

y= 2p4 cos α (cos m4– cos n4)–sin α[F(p4,m4)–F(p4,n4)+2E(p4,n4)–2E(p4,m4)]
k4

 . (18) 

    To end this section authors invoke basic description of elliptical integrals taken from monograph 
[2]. Elliptical integral of first kind in Legendre’s format is the function of variable ϕ and parameter 
p as follows  

F(p,ϕ)= ∫ dϑ
�1−p2 sin2 ϑ

ϕ
0 = ∫ dt

�(1−t2)(1−p2t2) 

sin ϕ
0  (19) 

whereas elliptical integral of second kind in Legendre’s format is the function  

E(p,ϕ)= ∫ �1 − p2 sin2 ϑ dϑϕ
0 = ∫ �1−p2t2

1−t2 dtsin ϕ
0  (20) 
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where parameter p is called modulus of elliptical integral. Functions F(p, ϕ) and E(p, ϕ) are 
presented in tables and for real arguments p and sin ϕ are subject to change in range between 0 
and 1. Complete elliptical integrals of first or second kind are functions K(p) or E(p) of modulus  
p and variable ϕ=π/2 

K(p)=F(p,π/2),  E(p)=E(p,π/2) . (21) 
 

Elliptical integrals of first and second kind have closed format only for  p=0 and p=1, whereas 
in all other cases their values are calculated by expanding in appropriate series – see [3]. 
FEM Verification 
The FEM model of the fly rod is based on the beam element and the variation of the cross section 
is subjected to stepping approximation – Fig. 4.  

 
Fig. 4. Length of subsequent fly rod elements and its FE discretization 

 
This approximation is based on division of each segment into ten equal elements and each 

connector, in which these segments link one to another, into two elements – Fig. 4.  
Basic dimensions of the fly rod along perpendicular direction are small when compare to the 

length, hence for clearness they are collected in Tab. 1, where subsequent symbols stand for: l – 
length of segment, b – thickness, Dmax/dmax – outer/inner diameter the biggest element in section, 
Dmin/dmin – outer/inner diameter the smallest element in section, and additionally D/d – jump in 
diameter between two adjacent segments.  
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Tab. 1. Basic dimensions of fly rod elements in [mm] 

element number of elements l b Dmax dmax Dmin dmin D/d 
segment 1 10 126 1.2 19.2 16.8 14.24 11.84 0.63 
segment 2 10 116 0.9 15.7 13.9 8.44 6.64 0.81 
segment 3 10 73.1 0.75 9.4 7.9 5.22 3.9 0.46 
segment4 10 46.8 – 3.5 – 1.6 – 0.21 

connector1 2 43 2.1 16.04 11.84 15.7 11.5 0.34 
connector2 2 43 1.65 9.94 6.64 9.4 6.1 0.54 
connector3 2 18.5 – 5.22 – 5 – 0.22 

 
Finite Element package ANSYS Workbench requires definition of material model, therefore 

the material Epoxy Carbon UD (230 GPA) is chosen from ANSYS library as the representative of 
carbon fibre/epoxy resin composite. Additionally, in order to improve material properties of 
aforementioned composite, the data presented in Tab. 2 is taken from the website of the producer 
of carbon fibre composite IM7 – see [7]. 

Tab. 2. Mechanical properties of carbon fibre composite IM7 [7] 

typical hexplay 8552 composite 
properties (at room temperature) 

 
US units 

 
SI units 

 
test method 

0otensile strength 395 [ksi] 2.723 [MPa]  
ASTM D3039 0otensile modulus 23.8 [Msi] 164 [GPa] 

0o tensile strain 1.6 [%] 1.6 [%] 
0o flexural strength 270 [ksi] 1.862 [MPa] ASTM D790 
0o flexural modulus 22.0 [Msi] 152 [GPa] 

0o short beam shear strength 18.5 [ksi] 128 [MPa] ASTM D2344 
0o compressive strength 245 [ksi] 1.689 [MPa] ASTM Mod. 

D695 0o compressive modulus 21.7 [Msi] 150 [GPa] 
0o open hole tensile strength 62.1 [ksi] 428 [MPa] ASTM D5766 

0o open hole compressive strength 48.9 [ksi] 337 [MPa] ASTM D6484 
90o tensile strength 9.3 [ksi] 64.1 [MPa] ASTM D3039 

fibre volume 60 [%] 60 [%]  
 
Boundary conditions applied to FE model are as follows: (hand grip) segment 1 is fully clamped 

at the node referring to the origin of coordinate system, whereas (tip) segment 4 load by 
concentrated force at the final node.  
Beam elements, shown in Fig. 4 (each colour refers to separate element), are conventional iso-
parametric elements – see [6], whereas mesh size is set up as default. Numerical tests with manual 
remeshing confirm good convergence of FE code. In order to proper capture of large deformations 
the Automatic Load Displacement Control (ALDC) procedure is switched on.  

Numerical simulations by FEM for selected loads 500, 1000 and 1500g and variable magnitude 
of distance are shown in Fig. 5.  

Comparison of selected experimental results and corresponding FEM and theoretical results 
(see Fig. 6) is done by use of commercial software tool Kinovea dedicated to image analysis. 
Briefly speaking Kinovea creates system of reference lines attached to photos (experiment) as well 
as to figures (FEM), and as a consequence it allows user for correlation of results. In general, the 
attained correlation is good provided that if deformation is moderate, which means referring to 
small magnitudes of load (100–500g) and simultaneously long distances (11–6m).  
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Fig. 5. FEM results for load magnitudes 500, 1000 and 1500g 

 
On the contrary, in case of advanced deformations, referring to bigger magnitudes of load (800–
1000g) and short distances (4–2m) some discrepancies are noticeable. Namely, central segments 
(#2 and #3) exhibit the biggest discrepancies for weight 1500g and distance 4m, whereas the tip 
element (#4) is responsible for generation of main discrepancies for weight 1000g and distance 
2m.  

 

 
Fig. 6. Comparison of experimental, FEM and theoretical results for two selected combinations 

of load magnitudes and distances 
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In the opinion of authors of present work, there are two main sources of discrepancies: 
- lack of information about the wall thickness, particularly with regard to central segments, 

that may essentially influence their stiffness,  
- lack of honest information concerning carbon fibre configuration in the composite thus 

authors assumes orientation 0o–90o as a default. 
Conclusions 
Presented experimental data is well mapped by numerical results in case of moderate deformations, 
whereas major discrepancies observed for advanced deformations come from: 

- essential difficulties in accurate measurement of the wall thickness, 
- uncertainty of fibre carbon configuration, that is subject to commercial confidentiality. 

Additionally, in case when even ALDC procedure (built in FEM package) fails the nonlinear 
theory of bending, taking advantage of elliptical integrals, is recommended for use. 
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