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Abstract. Toxic metal arsenic in the ground water is poisonous and harmful that should be treated 
to ensure human health and safety. For many years, different technologies have been developed 
for the treatment of contaminated water and adsorption is an economical method in which a large 
number of adsorbents are being used including metal oxides. The selection of these metal oxides 
needs to be done systematically to choose the best metal oxide with good potential for arsenic 
removal from water. Previous work has been mostly focused on experimental study, which is time-
consuming and expensive. Only a limited number of simulation study has been conducted, which 
is confined to only several specific adsorbents, such as oxides of iron. There is a need to do research 
for other metal oxides to evaluate which one is more capable of removing arsenic from water. In 
this research work, screening of metal oxides was done using Molecular Dynamics and Monte 
Carlo Simulation. The molecular structures were optimized and sorption calculations were 
performed at fixed pressure of 100kPa and temperature of 298K to observe the adsorption 
capability of metal oxides. Al2O3 and SnO2 were found to be good adsorbent for arsenic removal 
from water with adsorption capacity of 1681.80 g/g and 975.03 g/g respectively. Previously used 
Al2O3 was used as a benchmark for this research and adsorption capacity results also proved it. It 
was observed that SnO2 has potential to remove arsenic from water with adsorption capacity 
975.03 g/g. The results displayed that SnO2 can be one of the best adsorbents for application of 
arsenic removal from water. It is concluded that apart from using conventional metal oxides for 
arsenic removal, other metal oxides should be studied and can also be used as an adsorbent as they 
can provide great adsorption capacity for arsenic removal from water.  
Introduction 
Water is an essential element for living things to thrive. Humans can’t survive without water on 
this planet. However, with the increasing population and industrialization, access to safe drinking 
water is becoming more difficult. Water contamination has become a global problem. Developing 
countries are facing even more severe problems in this regard. According to World Health 
Organization (WHO), 80% of diseases are due to unsafe and polluted water [1].  In particular due 
to domestic, agricultural, medical, technological applications heavy metals have been widely 
distributed in our ecosystem, thus, raising concerns for human health and the environment.  

Heavy metal ions, such as Cadmium (Cd), Lead (Pb), Mercury (Hg), Arsenic (As), are severe 
threat to living organisms and metals are harmful for health and their prolonged intake may result 
in worst consequences [2]. Water treatment is necessary if these metals are present in water. 
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Among all the heavy metals, arsenic accumulation in groundwater is increasing with  time due to 
human activities and natural phenomenon [3]. Approximately 6.12 × 1010 and 2.380 × 1011 g of 
arsenic is added into our oceans per annum through soil erosion and leaching respectively [4]. 

Different processes have been employed for water treatment such as coagulation, adsorption 
and membrane separation. Adsorption is a very popular and effective method for water treatment. 
Many adsorbents are used for adsorption process like metal oxides, zeolites etc. Excellent 
adsorbents have a large area-to-volume ratio to provide maximum adsorption sites for metallic 
ions [5]. Adsorption is the best method for water treatment and specifically for arsenic removal 
from water as it is easy in operation and economical with greater efficiency. The removal of arsenic 
depends on the tendency of the adsorbent to sorb arsenic on its surface. There are a lot of adsorbents 
that can be used for arsenic removal from water and metal oxides tend to be a better candidate due 
to their surface area and adsorption capacity [6].  

Every metal oxide has a different capacity to sorb a compound to be removed.  Some metal 
oxides like iron oxides and aluminum oxide have been studied by experiments for arsenic removal 
from water and the experimental studies showed that Fe2O3 and Al2O3 are good adsorbents [7, 8, 
9]. For arsenic removal from water, molecular simulation has evolved as an emerging technology. 
It has been performed to circumvent limitation of instruments and materials from experimental 
perspective [10]. Moreover, it provides a platform to study the molecular level interpretation for 
parameters like energy, enthalphy or entropy [11].  

From the review, it is found that although a myriad of experimental work has been available for 
study of heavy metal removal from water, the investigations using molecular simulation are 
scarcely available typically for arsenic separation. Among the limited number of studies, they are 
only confined to specific adsorbents of iron oxide.[12, 13]. There should be research work related 
to molecular simulation and screening study for arsenic removal from water to select the best 
adsorbent for arsenic removal from water with good and effective adsorption capacity, it is 
important to be conducted but has received less scrutiny to date.  

In this research work, 11 metal oxides will be studied and adsorption capacity of these 
adsorbents will be unveiled by adopting Monte Carlo Simulation on Material Studio Software. The 
metal oxides selected to study for arsenic adsorption are Fe2O3, Al2O3, TiO2, ZrO2, Ag2O, CaO, 
CeO2, La2O3, MgO and SnO2 because of their applications in water treatment [14, 15, 16, 17, 18, 
19, 20]. The metal oxides Fe2O3 and Al2O3  are used as commercial adsorbents for arsenic removal 
from water and they are included as a benchmark [9] for sorption calculations whereas the other 
eight metal oxides are studied for sorption loading to remove arsenic from water.  
Methodology 
The simulation study was performed using Material Studio 8.0 Software [21]. Adsorption 
phenomenon was studied using molecular dynamics simulation on MS [21]. The geometry 
optimizations of all the metal oxide structures given in figure 1 was done using the Focite module 
with a Universal forcefield. Universal force field provides full coverage of the periodic table. It is 
good for predicting geometry and energy differences of organic molecules, inorganics and metal 
complexes. This force field corrects the angles and optimize the bond distance of molecules [22]. 
The structures of metal oxides adsorbents are given in figure 1.  
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(a)   (b)   (c) 

 

 
(d)    (e)   (f)   (g) 

 
(h)   (i)   (j) 

 
Figure  1: Illustration of adsorbents in Material Studio  (a) Fe2O3  (b) Al2O3  (c) TiO2  (d)ZrO2  

(e) Ag2O  (f) CuO  (g) CeO2  (h) La2O3  (i) ZnO  (j) SnO2 (k) FeO 

First of all, selected adsorbents structure was imported from Material Studio library and surface 
was built for each metal oxide. Then using Forcite module, Geometry Optimization calculations 
were performed. Geometry optimization was done to achieve stability of structure by energy 
minimization [23]. After that, sorption calculations were performed using Universal forcefield at 
temperature 298.0 K. From practical observation, it was seen that most water treatments plants are 
operated at room temperature and 100kPa, previous simulation studies were also performed at 
298.0K [24, 25, 26, 27] and 100kPa [28]. The computations  were performed using Monte Carlo 
Simulation at fixed pressure of 100kPa. This type of simulation is called as Grand Monte Carlo 
Simulation where temperature is kept constant and pressure is fixed and potential of adsorbent is 
estimated as sorption loading value [21].  

Sorption at fixed pressure task resembles experimental conditions and provides average loading 
of sorbate component at a given temperature.  The Metropolis method was employed using the 
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Universal forcefield in Materials Studio. The Metropolis method is a conventional Monte Carlo 
simulation approach that handles the sorbent as rigid structure and solely incorporates sorbate 
translations and reorientations [21]. Under the Metropolis method, the fixed pressure sorption 
function, also known as Grand canonical Monte Carlo (GCMC) simulations was used to predict 
the amount of sorbate at the designated temperature and pressure. It was performed using 
“Sorption” module in material software with medium quality. The sorption loading value of 
arsenic within the metal oxide showed its adsorption capacity.  
Result and Discussion  
The geometery optimization parameters of initial structures (before optimization) and final 
structure (after performing geometery optimization) for selected metal oxides are given in Table 
1. The calculations showed that the total enthalpy of the structure was lowered. This reduction in 
enthalpy value stabilizes the structure and then it was further used for sorption calculations. The 
optimization of van der waals energy and non-bond energy are major contributor for optimizing 
the total energy of the molecular structure [29]. The total molecular structure energy is reduced in 
this way to acheive stability. 

 
Table 1: Structure parameters of metal oxides before and after Geometry Optimization on 

Material Studio 

Sr. No. Metal Oxide Before geometry optimization 
of stucture parameters 

After geometry optimization 
of structure parameters  

  Total Enthalpy  (kcal/mol) Total Enthalpy  (kcal/mol) 

1 Fe2O3   179525.1 158163.3 

2 Al2O3 501334.3 444405.8 

3 TiO2 9245.8 7144.9 

4 ZrO2  291102.3 80875.7 

5 Ag2O 407.6 217.5 

6 CuO 7439.88 5757.75 

7 CeO2 9768.1 9726.7 

8 La2O3  31471.5 27291.1 

9 ZnO 17667.9 17326.5 

10 SnO2 70863.4 67335.6 

11 FeO 19802.6 17971.7 
 
Arsenic adsorption result from water using selected metal oxides are shown in table 2. The 

sorption loading was obtained from sorption module that is further used to calculate adsorption 
capacity.  
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Table 2: Sorption Loading and average total energy of metal oxides after loading, result for all 
selected metal oxides. 

Metal Oxide Average Sorption 
Loading  

Maximum Sorption 
Loading  

Adsorption Capacity 
(g/g)  

Fe2O3 0.973  7 13.51 

Al2O3 81.80 91 1681.80 

TiO2 0.045 2 1.58 

ZrO2 8.82×10-3 2 0.436 

Ag2O 0.083 3 4.05 

CuO 0.086 3 5.619 

CeO2 4.4×10-4 1 0.647 

La2O3 8.04×10-3 3 3.908 

ZnO 0.239 3 17.59 

SnO2 14.21 18 975.03 

FeO 3.3×10-4 1 1.126 
 
Fe2O3, Al2O3 were used as a benchmark to compare the sorption loading since they are 
conventionally used as adsorbent for arsenic removal from water with good adsorption capacity 
[9, 10]. The adsorption capacity obtained for Fe2O3 and Al2O3  was 13.51 g/g and 1681.80 g/g 
respectively, while for SnO2 the adsorption capacity obtained was 975.03 g/g. It was the second 
adsorption capacity among all these metal oxides. The arsenic adsorption on SnO2 is shown in the 
Figure 2, in which the red dots above the SnO2 indicates arsenic.  

 
Figure 2: Adsorption of Arsenic on the surface of SnO2 at fixed pressure  

This finding implied that it has a greater tendency to sorb arsenic and has potential to be a good 
adsorbent to remove arsenic from water. It should be studied as adsorbent for arsenic removal from 
water. Review from literature suggests that SnO2 is an effective adsorbent to remove other toxic 
metals like lead and cadmium [20] since it has the excellent capability and adsorption capacity. It 
is due to its interesting semiconducting property with band gap of 3.6 eV between O2 and Sn that 
give great capability of heavy metal ions removal [20]. Moreover, according to literature SnO2 
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nano-particles have high surface area of 128 m2/g [30] which makes it good adosrbent with great 
efficiency while microporous Fe2O3 has 111m2/g [31] that is less than SnO2surface area.  
Conclusion  
The screening of different metal oxides for arsenic removal from water was done using Material 
studio software and sorption calculations were performed. The adsorbents according to sorption 
capacity value were in the order of: Al2O3 ˃ SnO2 ˃ ZnO2 ˃ Fe2O3 ˃ CuO ˃ Ag2O ˃ La2O3 ˃ TiO2 
FeO ˃ CeO2 ˃  ZrO2. The results obtained from this present research work showed that among 
above 11 chosen metal oxides, SnO2 has second adsorption capacity of 975.03 g/g. Al2O3 has the 
maximum adsorption capacity of 1681.80 g/g among all and has been used previously for arsenic 
removal while Fe2O3  had adsorption capacity of 13.51g/g that is less than SnO2. SnO2 is a metal 
oxide that had not been used for arsenic removal from water but is used to remove other toxic 
metals like cadmium and lead from water. This study suggests that SnO2 has good adsorption 
capacity and potential to remove arsenic from water and should be explored as an adsorbent to 
remove arsenic from water. Moreover, that other metal oxides like CuO, MnO, ZnO and FeO 
should also be studied for arsenic removal form water. The effect of operating variables towards 
adsorption capacity should also be studied in the future to optimize the separation performance. 
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