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Abstract. Rolling is a well-established forming process for producing finished or semi-finished 
products in various industries. Although highly automated, most rolling processes are designed 
manually by experts based on their knowledge, highly specialized heuristics and analytical process 
models or numerical simulations. This manual design approach does not lead to an optimization 
accounting for multiple objectives. Previous work [1] has shown the potential of coupling 
reinforcement learning (RL) with fast analytical rolling models (FRM) to optimize hot rolling 
processes. However, the designed pass schedules do not robustly reach the desired final height 
within typical industrial tolerances. Therefore, in this paper the existing approach of coupling RL 
with an FRM is extended by dynamically ranges for height reductions. This extension guarantees 
that the target height is always reached exactly. In addition to the height reduction, the RL 
algorithm can determine the inter-pass time, initial slab temperature and rolling velocity. For the 
optimization, an objective function, called reward function, considering all relevant optimization 
objectives such as the final grain size and energy consumption, was developed. An exemplary 
training was performed for a defined starting (140 mm) and final height (25 mm). The resulting, 
automatically designed pass schedules reach the target height and fulfill all defined optimization 
objective including the required average austenite grain size. 
Introduction 
Hot rolling of flat products is a widely-used metalworking process, in which the material is heated 
above its recrystallization temperature and then passed through an arrangement of rolls to reduce 
its thickness. It is typically used for processing cast slabs or ingots into heavy plates or sheets with 
the desired geometry and material properties for various industries such as the automotive and 
construction industry. In fact, a large proportion of all steel (> 90%) and aluminum (> 60%) 
products are rolled at some point during their manufacture, as Allwood et al. [2] pointed out. 

With an annual global crude steel production of over 1,900 million tons in 2021 [3], it is clear 
that even small process improvements such as energy savings are of significant importance. It is 
therefore logical to further optimize the process parameters in hot rolling e.g. the height reduction, 
so that desired product properties, such as final geometry, grain size and corresponding mechanical 
properties, are achieved more efficiently thus minimizing the energy consumption.  

The product properties are determined by the initial material state, material properties like flow 
stress, heat transfer, microstructure evolution as well as the process parameters of each pass. These 
include height reduction, rolling velocity and inter-pass time among others. The challenge lies in 
the fact that (hot) rolling consists of several subsequent and coupled passes with the process 
parameters summarized in one overarching pass schedule. These dependencies result in a change 
of properties during each pass, therefore indirectly influencing every subsequent pass.  

Due to the complex interactions between the process parameters, the material properties as well 
as the processing constraints, the design and optimization of the pass schedule represents a 
complex multi-objective optimization problem. Despite great progress, detailed finite element 
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simulations as well as the use of classical optimization algorithms or specialized heuristics for 
process design are time consuming and hence not yet applicable for process optimization in the 
industrial context. Therefore, process design is often only based on experience of long-time rolling 
mill operators or fast process models. Previous work by Scheiderer et al. [1] showed that coupling 
RL with a FRM is very promising. RL is applied, since after a successful training process it is 
capable of solving given problems, e.g. to identify strategies in terms of a pass schedule, within 
seconds. During the training process, the learning part of the RL algorithm, which is called agent, 
learns through goal oriented interaction with a virtual process environment. Within the presented 
work, the required data for the RL-agent is provided by the FRM. However, the final height is not 
robustly reached within typical industrial tolerances. 

To tackle this challenge, this paper presents a workflow to ensure that the final target height is 
always reached exactly within the tolerance. After a brief overview of the current pass schedule 
design approaches and the application of RL for process optimization, the coupled approach is 
shown and explained. The focus lies on the newly developed reward function and workflow for 
robust attainment of the target height. Finally, an exemplary training is presented and discussed. 
Pass schedule Design and Optimization 
Various approaches to design and optimize pass schedules exist, the first objective of which is 
always to guarantee the attainment of a target height. Known approaches to distribute the height 
reduction to several passes are, for example, to set the height reduction per pass to the maximum 
permitted by the rolling mill limitations [4] or to aim for a uniform distribution of the rolling forces 
between the individual passes [5]. These approaches are usually used to design a first version of a 
pass schedule, which is then further optimized.  

As, Özgur et al. [6] pointed out in an extensive literature review, these pass schedules are mostly 
designed based on expert knowledge, analytical rolling models, finite element (FE) simulations 
and heuristics, and are therefore rarely optimized for several objectives simultaneously. These 
different approaches are often specialized for specific use cases, which makes a comparison or 
transferability almost impossible. A similar conclusion was reached by Pandey et al. [7] after their 
literature review demonstrating that, despite numerous methods, expertise is always needed. 

In recent years, evolutionary algorithms have been increasingly used to design and optimize 
pass schedules, as shown by the work of Wu et al. [8] and Hernandez et al. [9]. However, these 
algorithms do not learn relationships between process parameters and target variables, thus a 
separate design process has to be performed for each pass schedule. With the usage of RL in 
contrast, knowledge can be (partially) transferred to other pass schedules. 
Fast Rolling Models 
Fast rolling models (FRM) are able to calculate rolling forces and microstructure development for 
complete rolling processes within a few seconds. For this purpose, they usually consist of 
simplified, analytical models using semi-empirical equations to describe the material behavior. 
Numerous fast rolling models with different emphases can be found in the literature.  

Beynon and Sellars [10] present a rolling model called SLIMMER, which is able to describe 
the microstructure evolution and predict the rolling force and torque during hot rolling. Inspired 
by their work, Lohmar et al. [11] extended a similar model to include height resolution within the 
workpiece and considered the influence of shear during deformation. In addition to these classical 
approaches, data-driven methods have also been increasingly used in recent years to model the hot 
rolling process, for example by Shen et al. [12] to predict rolling forces. 
Reinforcement Learning for Process Optimization 
Reinforcement Learning (RL) is a branch of Machine Learning, which attempts to imitate natural 
learning behavior through reward and punishment. It consists of an iterative learning approach, in 
which it learns by mapping states to actions while trying to maximize a numerical reward [13].  
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In recent years, RL applications sprung up across the manufacturing field with exponential 
publication growth year by year as Li et al. [14] stated. The authors analyzed 264 different 
publications between 2013 and October 2022 and found, that optimizing energy consumption as 
well as costs and reducing reliance on expert knowledge as the main objectives of these 
applications. Esteso et al [15] came to similar conclusions and add that the great majority of RL 
applications in production technology utilize simplified (virtual) environments with discrete action 
spaces. Panzer and Bender [16] also conducted a literature review and conclude that in numerous 
applications RL outperforms previously used heuristics or algorithms. However, they are still not 
yet applied in real production.  

There are already several successful applications of RL for the optimization of forming 
processes, such as in open die forging [17] and wire hot rolling [18]. Reinisch et al. [17] coupled 
a process model with a RL algorithm to design and optimize pass schedules for open-die forging 
in terms of final ingot geometry, press force and process duration. The designed pass schedules 
led to executable forging processes. Moreover, Gamal et al. [18] demonstrated that RL in 
combination with process data identifies model parameters and thus improve model predictions 
for bar and wire hot rolling processes. For hot rolling, Scheiderer et al [1] published a RL approach, 
which can design pass schedules considering several optimization objectives. The authors used a 
database of simulation data to train the RL algorithm. However, the target height could not be 
exactly achieved, which in any case is necessary for industrial application. Therefore, in this paper, 
based on this previous work, the coupling is extended to such an extent that the target height is 
always reached exactly. For this purpose, the previously statically defined limits of the height 
reduction are dynamically adjusted so that they prevent the target height from being undershot. 
Advanced Coupling of RL with FRM 
In this chapter, the advanced coupling between a FRM and a RL algorithm is presented. Fig. 1 
schematically shows the structure of the coupled approach. The approach consists of an RL agent, 
representing the learning part, an environment, representing the problem and a set of selectable 
actions within defined ranges. At each discrete time step, the RL agent perceives the current state 
of the environment and performs actions, which result in changes of the environment. In this 
concrete use case, the RL agent chooses the process parameters of the next pass based on the 
current slab geometry and temperature. These process parameters lead to a change of the geometry 
and the temperature of the slab and therefore the state of the material. These changes are calculated 
by the FRM based on the chosen parameters, the previous material state and the material properties 
such as the flow stress. The RL agent designs the pass schedule pass by pass, thus feedback can 
be given to the agent directly after each pass 

Based on the FRM results, a numerical reward is calculated evaluating the quality of the chosen 
process parameters (actions). It can be either positive or negative, representing a reward or a 
punishment, respectively. The reward as well as the current state are passed to the RL agent, which 
stores the information. Based on all stored information, neural networks aim to learn relationships 
between the previous states, the process parameters, the resulting new state and the reward.  

The goal lies in identifying a sequence of process parameters (pass schedule), which result in a 
maximized reward. The described steps are repeated until the desired goal, here the target height, 
is reached. As soon as this is the case, the pass schedule design is completed, an iteration is finished 
and the material state is reset to the initial state. Afterwards, another iteration of the training process 
is performed. The training is carried out until the designed pass schedule converges. This means 
that the pass schedule does not really change from iteration to iteration. 

Each further iteration provides the RL algorithm with new information and therefore helps 
improving the choice of process parameters in further iterations. To guarantee continuous 
improvement of the designed process, the chosen reward function is of essential importance. Here, 
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it e.g. tracks and rewards, whether the final grain size matches the desired one, or punishes the 
exceeding of the maximum rolling force of the rolling mill. 

 

 
Fig. 1. Schematic depiction of the coupling of the RL algorithm with the FRM. 

 
As previously mentioned, the pass schedule design is performed pass by pass. Hence, it follows 

that the reward is also calculated directly after each pass instead of only receiving feedback after 
a complete pass schedule. However, the RL algorithm can only process a single numerical value 
to evaluate all defined optimization objectives. Thus, each objective first has to be evaluated 
separately, before being summarized to one numerical value. Table 1 lists all considered 
optimization objectives. 

 
Table 1. Overview of the optimization objectives. 

Optimization objective Goals 
Grain size 𝑅𝑅𝑑𝑑 Final average austenite grain size after rolling 
Force/torque 𝑅𝑅𝐹𝐹 / 𝑅𝑅𝑇𝑇 No exceeding of the rolling mill limits (80% of max optimal) 
Energy consumption 𝑅𝑅𝐸𝐸 Minimization of the energy consumption 
Process time 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Minimization of the process duration 
Height reduction 𝑅𝑅𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑 Minimization of total number of passes 

 
In this paper, the reward 𝑅𝑅 for each pass is composed as a weighted sum of six components 𝑅𝑅𝑡𝑡 

as shown in Eq. 1. The prioritization here lies in achieving a desired grain size as it corresponds to 
mechanical properties. Therefore, this reward component is provided with a higher weighting than 
the others. An evaluation of the height is not necessary as the target height is always achieved 
exactly by dynamic adjustment of the height reduction, which will be described later. 

𝑅𝑅 = ∑ 𝑤𝑤𝑡𝑡 ∙ 𝑅𝑅𝑡𝑡6
𝑡𝑡 = 3 ∙ 𝑅𝑅𝑑𝑑 + 𝑅𝑅𝐹𝐹 + 𝑅𝑅𝑇𝑇 + 𝑅𝑅𝐸𝐸 + 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑅𝑅𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑 (1) 

For the definition of the individual reward components 𝑅𝑅𝑡𝑡, continuous functions were chosen, 
which scale between -1 and 1 to ensure no prioritization only by function design. To prevent the 
accumulation of positive rewards by simply adding a large number of passes, most reward 
components are defined negatively. Selected reward functions for individual objectives are 
described in more detail below. 

During optimization, some goals are to be exactly reached (𝑅𝑅𝑑𝑑/𝑅𝑅𝐹𝐹/𝑅𝑅𝑇𝑇), while others are to be 
minimized (𝑅𝑅𝐸𝐸/𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) or maximized (𝑅𝑅𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑). Fig. 2 (left) shows the reward for the rolling force 
(𝑅𝑅𝐹𝐹). The definition for the rolling torque (𝑅𝑅𝑇𝑇) is equivalent to the one for the force. In both cases, 
it is important not to exceed the rolling mill limits while still using enough of the available supplies. 
Therefore, the reward increases up to an optimal working point (𝐹𝐹𝑜𝑜𝑜𝑜𝑡𝑡) sitting at 80% of the 
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maximum rolling mill force. This ensures that unintentional exceeding of the rolling stand limits 
is prevented even if process deviations or material fluctuations occur. If the defined operating point 
is exceeded, the reward decreases and reaches a penalty of -1 at the maximum rolling mill force. 

Fig. 2 (right) shows the reward for the austenite grain size (𝑅𝑅𝑑𝑑). The punishment increases the 
further the current grain size deviates from the desired target grain size (𝑑𝑑𝑇𝑇𝑑𝑑𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡). Once the grain 
size lies within the desired tolerance, the reward (𝑅𝑅𝑑𝑑) becomes positive. 

 

 
Fig. 2. Reward functions for rolling force (left) and grain size (right). 

 
For components requiring the minimization or maximization of a given process parameter, 

parabolas as shown in Fig. 3 on the left for energy consumption (𝑅𝑅𝐸𝐸) and on the right for height 
reduction (𝑅𝑅𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑) are used. These reward components are only defined between 0 and -1 so that 
the agent is forced to minimize the punishment. The energy consumption is calculated considering 
the rolling torque, rolling speed, roll radius and the process duration for each pass.  

 

 
Fig. 3. Reward functions for energy consumption (left) and for height reduction (right). 

 
In addition to the aspects described so far, the advanced coupled approach also has to ensure 

that the final height is exactly reached. Seeming to be particularly easy using human knowledge 
in process design, this has proven to be difficult for the RL algorithm in the past. In the work of 
Scheiderer et al. [1], the limits defined for the height reduction were the same absolute values for 
each pass. Therefore, the RL agent had to learn how to reach the target height, which did not 
always turn out to be successful. As soon as the maximum possible height reduction ∆ℎ was greater 
than the remaining difference between the initial height ℎ0 of the current pass and the target height 
ℎ𝑇𝑇𝑑𝑑𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡, there was a risk that the pass schedule leads to heights below the target height. To prevent 
this, dynamic adjustments of the height reduction limits [∆ℎ𝑡𝑡𝑡𝑡𝑚𝑚,∆ℎ𝑡𝑡𝑑𝑑𝑚𝑚] are implemented.  

For the maximum permissible height reduction (∆ℎ𝑡𝑡𝑑𝑑𝑚𝑚), two process-technological limits need 
to be respected. On the one hand, there is a maximum possible height reduction ensuring that no 
damage like cracking occurs. This limit (∆ℎ𝑡𝑡𝑑𝑑𝑚𝑚,1) is material-dependent and typically lies at 
around 40 % of the initial height ℎ0 of the regarded pass. On the other hand, the bite condition 
during rolling has be taken into account. Depending on the friction coefficient 𝜇𝜇 and the roll radius 
𝑟𝑟, it defines the maximum possible height reduction (∆ℎ𝑡𝑡𝑑𝑑𝑚𝑚,2), for which the material is still drawn 
into the roll gap. However, since there are uncertainties regarding the friction coefficient, here, 
85 % of the possible maximum height reduction is used. This ensures rollable pass. The 
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corresponding developed method is shown in Fig. 4. Based on the two calculated maximum 
possible height reductions (∆ℎ𝑡𝑡𝑑𝑑𝑚𝑚,1,∆ℎ𝑡𝑡𝑑𝑑𝑚𝑚,2), the smaller one is selected, so that both limitations 
are always fulfilled. In the next step, it is checked whether the chosen height reduction is larger 
than the remaining height difference between the current height and the target height ℎ𝑇𝑇𝑑𝑑𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡. If 
so, the maximum permissible height reduction ∆ℎ𝑡𝑡𝑑𝑑𝑚𝑚 is lowered to this difference.  

 

 
Fig. 4. Calculation of maximum height reduction ∆ℎ𝑡𝑡𝑑𝑑𝑚𝑚 to guarantee reaching the desired final 

height. 
 

Regarding the minimum height reduction (∆ℎ𝑡𝑡𝑡𝑡𝑚𝑚), there are no fixed limits. Small height 
reductions are principally allowed, see Fig. 5. However, they usually lead to longer process times, 
which are punished by the reward function as shown in Eq. 1. 

 

 
Fig. 5. Calculation of minimum height reduction ∆ℎ𝑡𝑡𝑡𝑡𝑚𝑚 to guarantee reaching the desired final 

height. 
 

Results: Training for Designing and Optimizing a Pass Schedule 
The above described approach was used to design a pass schedule for reversing hot rolling of a 
S355 steel slab with an initial height of 140 mm to a target height of 25 mm on the universal rolling 
mill Bühler VRW-400 at the Institute of Metal Forming (IBF). Furthermore, the optimization 
aimed to reach a final grain size (𝑑𝑑𝑇𝑇𝑑𝑑𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡 = 30 𝜇𝜇𝜇𝜇). The rolling mill limits were set to a force 
(𝐹𝐹𝑡𝑡𝑑𝑑𝑚𝑚 = 4 𝑀𝑀𝑀𝑀) and torque (𝐹𝐹𝑡𝑡𝑑𝑑𝑚𝑚 = 65 𝑘𝑘𝑀𝑀𝜇𝜇), while energy consumption and process time were 
to be minimized. During the training, the RL agent was able to vary the process parameters within 
the limits shown in Table 2. 

For the results shown in the following, an established RL algorithm, the Deep Deterministic 
Policy Gradient (DDPG) [19] was used. This algorithm uses two neural networks, allowing it to 
solve problems with continuous action spaces. One network estimates the cumulative long-term 
reward based on the current state and the chosen actions. The second network tries to learn a 
suitable strategy based on the reward estimation. 

For the coupling with RL, an already existing fast rolling model is used, which was developed 
and validated at IBF by Lohmar et al [11]. It consists of several modules allowing the prediction 
of deformation, temperature and austenite grain size evolution as well as rolling forces and torques. 
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Table 2: Ranges of the RL agent's selectable process parameters. 

Process parameter Limits 
Minimal Maximum 

Height reduction ∆ℎ ∆ℎ𝑡𝑡𝑡𝑡𝑚𝑚 ∆ℎ𝑡𝑡𝑑𝑑𝑚𝑚(𝜇𝜇 = 0.3, 𝑟𝑟 = 205 𝜇𝜇𝜇𝜇) 
Initial temperature 1000 [°C] 1200 [°C] 
Inter-pass time 5 [s] 30 [s] 
Rolling velocity 100 [mm/s] 500 [mm/s] 

 
The presented training was carried out with 20,000 iterations, which corresponds to 20,000 

calculated pass schedules. This equals about 24 hours of calculation time (CPU: Intel Xeon E3-
1270). Fig. 6 shows the height evolution in black and the grain size evolution in red for the first 
and the final designed pass schedules. It is evident that the number of passes (from 18 to 8 passes) 
and the process time have been reduced and that the target grain size has been reached. 
Furthermore, both pass schedules reach the desired target height, regardless of the training 
progress. This is ensured by the dynamic adjustment described in Fig. 4 and Fig. 5. 

 

 
Fig. 6. The first (left) and the final (right) designed pass schedule after 20,000 iterations by the 

RL agent. 
 

For comparison, Table 3 shows two pass schedules, one designed using static limits for ∆ℎ and 
one designed by the presented extended approach. In both cases, the same optimization objectives 
and boundary conditions were used. Both lead to similar results, e.g. final grain size. 
 

Table 3. Comparison of the final designed pass schedule with static ∆ℎ limits and with the new 
dynamic approach. 

Pass 
Number 

Height after each pass in [mm] 
Static ∆ℎ Dynamic ∆ℎ 

1 124.32 124.32 
2 108.64 108.64 
3 92.64 92.95 
4 77.27 77.27 
5 61.59 61.59 
6 46.22 45.91 
7 33.31 30.54 
8 24.88 25.00 
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Although the difference between the two pass schedules appears to be negligible, it is of great 
importance since an undershooting of the final height is irreversible and leads to unsaleable 
products. The comparison demonstrates that the presented approach successfully supports the RL 
agent in identifying strategies, which lead to saleable products.  

In addition to the resulting pass schedules, taking a closer look at the training progress is of 
interest, too. Therefore, the results achieved using the dynamic ∆ℎ are shown in more detail. Fig. 
7 shows the evolution of the total reward 𝑅𝑅𝑡𝑡𝑜𝑜𝑡𝑡𝑑𝑑𝑑𝑑 of the complete pass schedule in blue and the 
deviation ∆𝐺𝐺𝐺𝐺 between the final average grain size and the target one in red during training. The 
evolution of the total reward over the iterations clearly shows that the reward increases the most 
within the first 1,000 iterations. Afterwards, it increases only slightly until it reaches a constant 
level at about 2,500 iterations.  

A similar pattern can also be found for the deviation of the final grain size from the target one 
(∆𝐺𝐺𝐺𝐺). The initial deviation of about 20 µm is significantly reduced in the first 1,000 iterations, so 
that the deviation at 2,500 iterations lies at only a few µm. Subsequently, the desired grain size is 
reached. The results show that the training is clearly converging towards a total reward of about -
10, at which the target grain size is reached. Comparing the evolutions of the total reward and the 
deviation from the target grain size, it is noticeable that both correlate well, especially at the 
beginning and up to about 1,000 iterations. This strongly indicates that at the beginning the RL 
agent is trying to achieve the target grain size as soon as possible. This results from the 
prioritization of this component in the reward function. This indicates that weighting of individual 
components in the overarching reward function can be used to successfully focus on certain 
optimization objectives while still achieving all other desired objectives. 

 
Fig. 7. Evolution of the total reward in blue and the deviation of the average grain size from the 

target grain size (30 μm) ΔGS in red. 
 
Fig. 8 shows the evolution of the energy consumption as well as the total number of passes of the 
designed pass schedules during the training. It is noticeable that the energy consumption initially 
increases significantly, peaks at around 500 iterations at 0.14 GJ and then continuously decreases 
until it reaches a constant level at about 5,000 iterations with a value of 0.12 GJ.  

Another example for the well-defined prioritization in the reward function is the evolution of 
the number of passes in the pass schedules laid out. The aim was to favor height reductions that 
are as large as possible so that the required number of passes is as low as possible. A small number 
of passes usually results in a shorter process time and thus higher efficiency. Here, the number of 
passes per pass schedule strives very quickly from 18 to the minimum possible number of eight. 

In addition to the values shown here, the analysis of the resulting rolling forces and torques 
showed that the maximum rolling mill limitations were retained at all times during the training. 
Moreover, the final height is exactly reached by using the dynamic adjustment of the height 
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reduction presented in this work, it can be stated that rollable pass schedules have been laid out 
successfully after only a few thousand iterations. Moreover, the dynamic adjustment of the height 
reduction accelerated the training progress significantly compared to the previous work [1]. 

 

 
Fig. 8: Evolution of the energy consumption in blue and of the total number of passes in orange 

of the designed pass schedules during the training. 
Summary 
The results show that the coupling of RL with an FRM can successfully learn the complex 
interactions between process parameters, material behavior and the final properties such as the 
final austenite grain size. The approach does not require explicit knowledge or procedure and can 
automatically design pass schedules for multiple optimization objectives based on a reward 
function. The presented extension, the dynamic adjustment of the height reduction, ensures that 
the target height is always hit exactly. It guarantees automatically designed pass schedule that lead 
to saleable products. Furthermore, compared to the results of previous work, learning could rather 
be accelerated. Additionally, the further objectives, especially the target grain size, were 
successfully achieved. Following next, the designed pass schedules are to be experimentally 
validated, while the knowledge of the trained RL agents will be transferred to design further pass 
schedules with varying starting and final geometries. 
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