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Abstract. This research presents an automatic algorithm, implemented in a Visual Basic 
Architecture (VBA), for the optimization of the gate location in thermoplastic injection molding 
of short fibers reinforced composite materials. The algorithm receives, as input, the geometry of 
the component and, according to the user’s choice, defines the injection points grid, and relevant 
versors, on a pre-constructed mesh, automatically runs the finite volume method (FVM) simulation 
and exports the fiber orientation tensor (FOT) on each node of the mesh. The nodal coordinate of 
the part and the relevant FOT are then used as the training dataset for a Gradient Boosting (GB) 
algorithm for the full correlation between injection gate locations and the resulting fiber orientation 
distribution (FOD), allowing to define the injection gate configuration better suited to maximize 
the effectiveness of the reinforcement fibers. By coupling the trained GB algorithm with a finite 
element method (FEM) simulation it was confirmed that the developed algorithm can predict the 
influence of the gate location on the FOD and the resulting mechanical performances, improving 
the stiffness between 3.8% and 32.6%, on simple and complex geometries alike. 
Introduction 
In recent years, the injection molding process has been growing in both importance and utilization 
thanks to the development of innovative polymers and reinforcements [1, 2]. This is especially the 
case in the automotive industry, where lightweight design [3] and recyclability [4] are becoming 
ever-growing focus points for research and development. Although injection molding is 
considered a fairly well-established manufacturing process, several independent parameters must 
be properly set to achieve a high quality of the molded parts, especially in terms of minimizing 
warpage, shrinkage, and weld-lines on the critical region of the component [5-7]. Besides, the 
recent trend is to incorporate woven composite into an injection-molded thermoplastic matrix to 
achieve recyclability while enhancing the mechanical properties of the molded part [8]. 

For the case of short fibers-reinforced thermoplastic polymers (SFRTP) the fiber orientation is 
influenced by both the component geometry and the injection gates configuration. As it is well 
known from various recent contributions, fiber orientation is responsible for static, fatigue, and 
fracture properties of SFRTP [9, 10]. In addition, as demonstrated for both short glass fibers (SGF) 
and short carbon fibers (SCF), the interaction between polymer matrix and fibers reinforcement 
plays a pivotal role in controlling the notch sensitivity [11, 12]. Accordingly, controlling and 
optimizing the fiber orientation in injection molded components becomes of paramount 
importance to maximize the effectiveness of the reinforcement. 
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For SFRTP, the fiber orientation distribution (FOD) is influenced by both the injection gates 
and the geometry of the component, and in a lesser manner by the applied processing conditions. 
The component geometry varies from case to case and is not easy to generalize. For this reason, 
recent contributions dealing with the optimization of injection-molded components focused on 
controlling the global thickness distribution and inserting local rib networks to limit the warpage 
[13, 14]. On the other hand, injection gate (IG) design has also attracted the interest of researchers 
over the years, and various modeling technics have been applied to achieve greater optimization 
considering different criteria, as hereafter summarized. 

Zhai et al. [15, 16] developed a recursive approach and a sequential linear programming 
algorithm to identify the IG locations, allowing for a balanced filling on injection-molded parts. 
The optimization criterion is based on a uniform distribution of the clamping force during the 
filling phase and was validated on a U-shape part. Li et al. [17] developed a black-box algorithm 
for the optimization of the IG considering the injection pressure, warpage, residual stress, and weld 
lines as optimization criteria. Similarly, Moayyedian and Mamedov [18] proposed a multi-
objective optimization approach to defining the combination of process parameters and IG 
locations, allowing for a reduction of the molding defects, such as shrinkage, warpage, and short 
shot. More recently, Moayyedian and Mamedov [19] also proposed a methodology for the 
reduction of the same molding defects but based on an artificial neural network and Taguchi 
techniques, showing a relatively low margin error, quantified in 15%, and attributed to 
uncontrollable process variability. Besides, the only contribution dealing with fiber orientation 
optimization for the SFRTP focuses on the IM process parameters, thus the IG location was 
considered a constant in the analysis [20]. Other recent contributions proposed case studies 
investigating the effect of different IG configurations, and process parameters, on the filling time 
and quality of the molded component [21-23]. However, being these highly customized 
approaches, they can hardly be extended to different geometries and, most of all, they are all based 
on unfilled thermoplastic polymers. Accordingly, a general and customizable design approach for 
the gate location in the case of SFRTP seems to be missing in the literature, 

To this aim, this research presents an algorithm able to automatically set up a user-defined 
number of injection molding FVM simulations, implemented in Autodesk Moldflow Insight 2023, 
run them, and export the fiber orientation tensor (FOT) on one or more control volumes defined 
by the user. The coordinates IG points, relevant versors, and the average fiber orientation tensor 
in the control volumes of interest are used to train and validate a machine learning (ML) model, 
based on the Gradient Boosting (GB) algorithm.  

The proposed algorithm can suggest the best IG location allowing for the maximization of the 
FOD along one or more regions of interests and directions, with assigned priorities, resulting in 
customized stiffness enhancement. The maximization is carried out considering the load path, thus 
the directions along which the reaction forces are maximum, because of the applied displacements. 
The procedure has been developed and tested considering three geometries with an increasing level 
of feature complexity by mapping the FOD and relevant mechanical properties from the FVM 
simulation onto the FEM simulation, implemented in Abaqus 2020. The application of the IG 
optimization procedure allowed improving the component’s stiffness between 3.8% and 32.6%, 
showing the effectiveness and the generality of the proposed algorithm. 
Materials and Methods 
This chapter is subdivided into three sections. The first deals with the proposed VBA algorithm 
for the automatic definition of the injection gate grid and the export of the FOD from each one of 
the FVM simulations. The first section also includes some details of the implemented machine 
learning model, based on the Gradient Boosting (GB) algorithm. The second section briefly 
describes the material properties of the employed polyamide-6 reinforced with 20% of short carbon 
fibers (PA6-20CF) and the relevant calibration into the FVM simulation. Finally, the third section 
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explains the mapping procedure for the transfer of the FOD, and relevant mechanical properties, 
from the FVM to the FEM simulation, for the evaluation of the stress distribution on the considered 
components as a consequence of the applied displacements.  
Gate Location Optimization Algorithm  
The IG location optimization algorithm is composed of four steps, as summarized in Fig. 1. All 
the steps are implemented in VBA programming, except for the ML-GB model of step#4, 
implemented in Python 3.11 and coupled with the scikit-learn 1.1.1 and SciPy 1.7.1 open-source 
libraries. In the algorithm, step#1 is devoted to the definition of the IG candidates on the selected 
model geometry that can be defined by the user on a predetermined grid or manually deployed. 
Step#2 receives the matrix with the IG candidates, and their relevant versors, to assure a 
perpendicularity onto the geometry and prepares the input files for the FVM simulation, 
comprehensive of all IG configurations to be tested. 
 

 
Fig. 1. Working flow for the injection gate (IG) optimization algorithm. 

 

 
After the completion of all FVM simulations setup in step#2, step#3 creates a single result 

dataset file including i) coordinates of the IG point, ii) coordinates of all the nodes of the mesh 
(same for each simulation), and iii) results of the FOT (6 components) for each node. During 
step#3, the user is required to input the locations of interest and the relevant direction, or directions, 
along which the FOD should be oriented. To this aim, FEM simulations have been utilized to 
identify the regions of interest on the considered parts and, within those regions, the directions 
along which the stress components are maximum. Thus, by aligning the fibers along these 
directions, their effectiveness can be improved, allowing for an improvement in stiffness. 

Before reaching step#4, the dataset constructed in step#3 is utilized to train and validate the 
prediction part of the architecture, based on the GB algorithm. 80% of the database is utilized for 
training purposes, whereas the remaining 20% is dedicated to validation. During the training, a k-
fold validation, with k=5, is employed to assure accuracy and the absence of overfitting. If both 
conditions are satisfied, the user is presented with the location of the IG allowing for the 
maximization of the FOD in the locations of interest. 

At this point, two important clarifications must be made. First, if the user is not satisfied with 
the accuracy of the prediction carried out by the GB model, the procedure can be upgraded by 
setting a finer grid for the IG location candidates in step#1, where only the new FVM simulations 
must be run and then integrated with those of the previous phase. Second, the proposed 
methodology considers only a single injection gate. Future studies are going to be focused on the 
direction of multiple IG optimization for better applicability in industrial applications. 
Material Properties and FVM Simulation Setting  
For the setting of the FVM simulations, the material properties relevant for the PA6-20CF material, 
as calibrated in previous works of one of the authors [9, 10, 12], have been employed. For their 
calibration into the FVM simulation, necessary for the subsequent mapping onto the FEM mesh, 
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the Ramberg-Osgood constitutive model, Eq. 1, has been employed and coupled with an 
anisotropic Hill’48 yield function, Eq. 2. The α and β parameters are calculated according to the 
FOT, for each element of the mesh as in Eq. 3, referring to the region of the model where it is 

maximum. In Eq. 3,  represents the first eigenvalue of the fiber orientation tensor on each 

element of the mesh, whereas ,  and , are the reference values for the considered 
material, and are calculated during the material properties calibration. Fig. 2 shows the 
experimental engineering stress-strain curves for the considered PA6-20CF material (Fig. 2a), the 
comparison between experimental and constitutive modeling load-displacement curves (Fig. 2b), 
and model constants and reference values for the Ramberg-Osgood and anisotropic Hill’48 models 
(Fig. 2c). 
 

 

(1) 

 

(2) 

 

(3) 

 

 

Fig. 2. (a) Materials properties and (b) comparison between experimental and constitutive 
modeling results of load-displacement curves for 0°, 45°, and 90° directions.  

(c) Model constants for the Ramberg-Osgood model and anisotropic Hill’48 yield function. 
 
As concerns the mesh for the FVM simulation, the same mesh strategy, 3mm side 3D tetrahedral 

elements, has been employed and verified through mesh sensitivity analysis. In terms of injection 
molding process parameters, to avoid any bias, the same mold temperature, molten material 
temperature (at the nozzle), and cooling temperature of 285°C, 85°C, and 25°C, have been 
employed in all simulations. Regarding the injection time, it has been kept automatically controlled 
during the simulation, to avoid short-shot, whereas the post-pressure has been set at 80% of the 
injection pressure, for a total of 20s.  
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FVM-FEM Mapping and Tested Components 
To test the improvement of the FOD with respect to the applied displacements, a mapping 
procedure to account for the FOD-dependent material properties in the structural FEM simulation 
has been employed. The structural FEM simulation has been implemented in ABAQUS 2020. The 
procedure is summarized in Fig. 3 and is based on the Ramberg-Osgood and anisotropic Hill’48 
formulations presented in the previous section whereas the mapping is carried out by Autodesk 
Helius 2023. 

 

Fig. 3. Main steps in the mapping procedure for the consideration of the fiber orientation of 
the FVM simulation into a FEM structural simulation environment. 

 

For each element of the FVM mesh, a corresponding set of elements in the FEM mesh is located 
based on their relevant position in the GCS, the same for both simulations. According to the FOT 
of each element of the FVM simulation, a specific set of mechanical properties is mapped onto the 
FEM simulation mesh. This procedure has been successfully applied and validated in other works 
of one of the corresponding author [9, 10, 12]. To test the IG design algorithm, three components 
have been considered, as shown in Fig. 4. The three parts have an increasing level of complexity 
and have all been subjected to a tensile displacement of 5 mm. 

 
Fig. 4. Mechanical parts use for the validation of the IG location design algorithm. (a) 

Bored cube, (b) Multi-thickness element on a square base, and (c) Pump housing. 

The three geometries of Fig. 4 have been all meshed with C3D10I tetrahedron elements, thanks 
to their good compatibility with those of the FVM simulation, whereas a quadratic integration 
scheme has been employed to allow for a better description of the deformation behavior between 
the edges and within the elements. The total number of elements for the three models is 306,165 
(Fig. 4a), 243,183 (Fig. 4b), and 211,149 (Fig. 4c), respectively. The FEM simulations have been 
implemented in the ABAQUS/Standard environment, considering a static-implicit solution 
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technique. Finally, the simulation time has been divided into 100 steps for easier export and 
comparison of the results among the simulation cases of the same part. 
Results and Discussion 
To validate the IG location optimization algorithm, the procedure summarized in Fig. 1 has been 
applied to the three components of Fig. 4. The results, and relevant considerations, are reported in 
this chapter of the paper.  

The initial step, prior to the application of the IG design algorithm, is the identification of the 
regions of the model subjected to high stress, or stress concentration, due to the displacement 
boundary conditions, or specific geometrical features. Accordingly, three FEM simulations 
considering only elastic material properties equal to E = 14GPa and ν = 0.37, representative of a 
sort of 0° direction for the PA6-20CF material, have been implemented. The results, reported in 
Fig. 5, allowed identifying two regions of interest for Model 1, four for Model 2, and three for 
Model 3, respectively. In Fig. 5, the normalized stress components (-1, +1 range) on the regions 
of interest are reported and are utilized as a reference for the directions along which to maximize 
the FOD. Rather than a quantitative estimation, the aim of this preliminary phase is the definition 
of the regions of the model where to focus on the optimization of the effectiveness of the FOD. 

 

 

Fig. 5. Identification of the regions of interest from isotropic properties FEM for  
(a) Bored cube, (b) Multi-thickness element on square base, and (c) Pump housing models. 
 
As defined in Fig. 1, the algorithm requires the definition of a mesh grid and the list of the IG 

candidates, with relevant versors, to assure perpendicularity with the geometry. For the three 
models of Fig. 4, 80, 70, and 140 IG candidate locations have been randomly assigned on an 
automatically generated 3 mm mesh grid in the relevant FVM simulations. The results, in terms of 
stress components (σx,y,z) for the best and worst IG locations, among the tested candidates, for the 
three tested components, are reported in Fig. 6a, 6b, and 6c, respectively.  

The stress components of Fig. 6 are the average values relevant to a control volume of R = 5 
mm around the element with the peak stress. As expected, a lower fibers alignment along the 
directions of loading (load path) results in a lower stress component along the same direction, a 
fact caused by a lower stiffness of the material. Since all simulations have been set up considering 
a displacement boundary condition, the reaction force is calculated according to the material 
properties, Fig. 2a. Thus, the higher the alignment of FOD with the reaction force direction, caused 
by the applied displacement boundary condition [9, 10], the higher the resulting stress. 

This fact is clear when analyzing the difference between the best and worst IG configurations, 
for all three components reported in Fig. 6. For instance, in Model 1, due to the proximity of the 
two regions of interest, the average improvement is around +30%. For more complex parts, such 
as Model 2, the improvement is represented by a reduction of the compressive stresses, which has 
also a positive effect on the performances of the component due to the low compressive strength 
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of fibers reinforced materials. In general, the IG design algorithm gives priority to the regions 
identified by a high normalized value, as shown in Fig. 5. On the other hand, in some conditions, 
the optimization may result in a higher improvement of the effectiveness of the reinforcement in a 
region of the model which is not the main priority. This is clearly visible from the results of Fig. 
6c, where region ③ shows a higher stiffness improvement than region ②, although the latter has 
the highest priority according to the normalized stress presented in Fig. 5c. 

 

 
 

Fig. 6. FOT distribution (FVM simulation) and stress components (FEM simulation) for the 
best and worst IG locations for (a) Model 1, (b) Model 2, and (c) Model 3. 

From a general perspective, it is interesting to highlight that, according to the results presented 
in Fig. 6, for all three models and even before the final optimization stage, implemented through 
the ML-GB algorithm, the average improvement in terms of FOD is clear and quantified in 28.7%, 
16.3%, and 13.4% for the three investigated components. The almost two times higher stiffness 
improvement estimated for the bored cube part is related to the relative simplicity of the geometry, 
which makes it easier for the IG optimization algorithm to identify the best IG location. 

In order to achieve full optimization for the IG location, the FOD resulting from the FVM 
simulations of each of the three components have been utilized for training and validation for the 
ML-GB algorithm. The average deviations between true and predicted values for the FOD for the 
components have been calculated at 5.6%, 4.8%, and 3.5% for the training datasets, and 5.2%, 
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4.8%, and 3.4%, for the validation datasets, respectively. These deviations are the average ones 
relevant for the 5-fold validations and show the quality of the prediction and the absence of bias. 

By employing the trained GB model, further improvements on the FOD could be achieved, as 
reported in Fig. 7. For the case of Model 1, due to the low complexity of the geometry, the FVM 
simulation-based analysis was sufficient in identifying a fairly good IG location, thus the stiffness 
improvement provided by the application of the GB algorithm is minimal. However, for both 
Model 2 and Model 3, the application of the trained GB model allowed identifying a better IG 
location, not previously included in the FVM simulation database, which achieved a further 
improvement of the effectiveness of the fibers reinforcement. For Model 2 the average stiffness 
improvement, with respect to the results of Fig. 6, is quantified in 4.6%, whereas for Model 3 is it 
quantified in 3.3%. 

 

 
Fig. 7. Stress components for the best IG locations before and after the GB-IG optimization for 

(a) Model 1, (b) Model 2, and (c) Model 3 
Summary 
The research presented in this paper detailed a highly customizable algorithm for the optimization 
of the injection gate location in the thermoplastic injection molding process for the maximization 
of the effectiveness of the fibers reinforcement in SFRC. The IG prediction algorithm proved to 
be able to achieve a concurrent optimization of the FOD in various regions of interest while 
prioritizing those with the highest stress distribution. Being implemented on freeware SW, the 
proposed algorithm can be implemented directly to various components, from low to high 
complexity, allowing for higher exploitation of the potentials of SFRC. On the other hand, as also 
previously mentioned, more research work should be oriented on extending the proposed 
methodology to multi-gate injection molding, to allow for the application to bigger geometries 
where a single IG is not sufficient. In addition to that, the influence of the injection molding process 
parameters on the FOD is going to be accounted for as well, to allow for a more comprehensive 
and realistic prediction and optimization of the IG locations. 
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