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Abstract. After the continuous hot-rolling process, steel bars are immediately placed on the 
cooling bed. At the beginning of the cooling, the material is at high temperatures, and the yield 
strength is low. Due to thermal load, yield strength can be exceeded, and permanent plastic strains 
start accumulating, resulting in possible unwanted shape changes and residual stresses. The present 
paper aims to develop a thermo-mechanical model for studying and eliminating undesirable 
phenomena before the products leave the cooling bed. The governing equations are solved for the 
two-dimensional slice in a strong form, and a modified version of the radial basis function 
generated finite difference (RBF-FD) method [1]. The initial bar geometry is obtained from the 
existing meshless hot-rolling simulation system [2]. The thermal and mechanical models are one-
way coupled, i.e. the temperature solution represents a driving force for the stress and strain 
solution. The temperature field is obtained with explicit propagation in time. The convective and 
radiative heat fluxes on the boundary are updated at each time step using the ray tracing procedure 
to determine the radiative heat flux. The mechanical part is solved by considering the small strain 
elasto-plasticity, where the isotropic von Mises temperature-dependent hardening is employed. 
The global system of nonlinear equations of the mechanical part is solved by the Newton-Raphson 
method. The closest point projection method is used to solve the constitutive relations. A 
sensitivity study is performed on the influence of cooling intensity on a rectangular steel bar’s 
temperature, stress and strain field. We defined the most influential factors for defect formation. 
For the first time, a novel meshless RBF-FD method is successfully used for solving such a 
complex industrial problem. The model will be perspectively upgraded from the slice to the three-
dimensional model to enable also bending. 
Introduction 
The meshless strong form radial basis function generated finite difference (RBF-FD) method has 
gained popularity in modelling different steel production processes. It has been successfully 
applied to solve large spectra of continuous casting problems, such as diffusion-convection with 
phase change [1], natural convection influenced by magnetic stirring [3], turbulence phenomena 
[4], 2D microsegregation with grain growth [5], and 2D thermo-mechanics [6]. Also, multi-pass 
hot-rolling has been successfully modelled with RBF-FD [2,7], including the grain size prediction 
[8]. 

This work represents the first use of RBF-FD for solving the thermo-mechanical response of 
the last stage of hot-rolling, where the hot-rolled steel bars are cooled. Previous attempts at 
modelling this step were performed in 1D [9], 2D [10,11] and 3D [12,13].  In [9], the friction with 
the supports was investigated. In [12], a simple thermo-elastic description has been used and later 
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extended in [13], including contact with the supports and gravitational load. In [10], the bending 
of the bars and the residual stresses were computed, and in [11], the flow of surrounding air was 
included to better predict heat transfer at the boundary. All of the above studies were performed 
for symmetric and asymmetric rail profiles where the geometry significantly impacts the bending 
and residual stress formation. 

An example of round steel bars cooling on the cooling bed (CB) is shown in Fig. 1 left. A cross-
section scheme with rectangular bars (80 39×  mm) used in this work is presented in Fig. 1 right. 
The heat shield with the length of lp  is positioned on top of the CB, raised by yp  from the lowest 
point of the CB. Each bar starts from the left at the position 1p . After a time pt , the bar is moved 
for a distance bpx  to the position 2p , and a new bar occupies the position 1p . This movement is 
repeated until the final position np  is reached, where the bars leave CB.  

The influence of the position of the heat shield above the bars yp  and the distance between the 
bars bpx  on the thermo-mechanical response is investigated. 

  

Fig. 1. Left: Photo of the cooling bed. Right: cross-section of the cooling bed with rectangle 
steel bars present on each position ip .  

Thermal Model 
Cooling of the steel bars is governed by the heat diffusion equation 

   
2( )pc T k T k T

t
ρ∂

= ∇ ⋅∇ + ∇
∂  

 
(1) 

where , ,pc kρ  and T stand for the density, the specific heat at constant pressure, the heat 
conductivity and the temperature, respectively. Material parameters , pcρ  and k  are temperature-
dependent. Neumann boundary condition is employed as 

   
conv rad

Tk q q∂
⋅ = − = +

∂
q n

n  

 
(2) 

where q represents the total heat flux and n is normal at the boundary. The prescribed value on the 
right-hand side is composed of convective convq  and radiative radq  terms, defined as 

   ( )conv ambq h T T= − ,          
4 4εσ( )rad ambq T T= −  

(3) 
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where h, ambT , ε and σ stand for the heat transfer coefficient, the ambient temperature, the 
emissivity coefficient, and the Stefan-Boltzmann constant, respectively. Since the bars are 
positioned close to each other, and a heat shield is present above the cooling bed, information 
about the geometry and the positioning is effectively introduced in radq . The boundary of the 
system, composed of the bars and heat shield, is discretized and enclosed inside another discretized 
closed-loop virtual boundary. The net radiative heat flux of the i -th discretized boundary surface 

,rad iq  is defined as a difference between the emitted heat flux from the surface and the received 
heat flux from the surroundings as 

   

4 4
,

1
ε σ ε σ

J
j

rad i i i j j j i
j i

A
q T T F

A →
=

= −∑
 

 
(4) 

where the received part is defined as a sum over all J  discrete surfaces (DSs). DS visibility is 
defined by the view factor [ ]0,1j iF → ∈ . It represents the portion of the radiation emitted by the 
surface jA  received by the surface iA  [14]. 

Mechanical Model 
This work considers small strain elasto-plasticity with von Mises flow rule and isotropic 
hardening. The mechanical equilibrium of the steel bar is described by the balance law 

   ∇⋅ =σ f  
(5) 

 where σ  is the stress tensor and f  is the body force. The strain tensor is defined in terms of 
displacement u  as ( )1/ 2 s= ∇ +∇ = ∇ε u u uT . It can be split into elastic eε  and plastic pε  terms 

e p= +ε ε ε . The relationship between stresses and strains is defined by the Hooke’s law 

   ( )e e e p= = −σ ε ε εD D  
(6) 

where De represents the fourth-order elasticity tensor. The employed von Mises yield criterion 
states that the material yields when von Mises stress 23vm Jσ =  exceeds the yield stress obtained 

from the uniaxial tensile test yσ . 2J  represents the second invariant of the deviatoric part 
tr( ) / 3= −s σ I σ  of the stress tensor, where I is the identity tensor. The evolution of the yield stress 

is defined by a hardening law ( , )p
y y Tσ σ ε= , assumed to be a nonlinear function of the 

temperature and the accumulated plastic strain 2 / 3 || ||p pε = ε . Johnson-Cook strain rate 
independent hardening law is used 

   
( )( ) 0

0

( , ) 1
m

np p
y

m

T TT A B
T T

σ ε ε
  − = + −   −    

 
(7) 

where all constants are determined by fitting 46MnVS5 steel data obtained by the JMatPro 
software. Admissible stress states are compactly specified with a yield function  
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   2( , ) 3 ( ( )) 0y yJσ σΦ = − ≤σ s σ  

(8) 

where ( , ) 0yσΦ <σ  holds in the elastic regime and ( , ) 0yσΦ =σ  holds in the plastic regime. The 
evolution of the plastic strain is defined in the rate form by a plastic flow rule 

   

3
2 || ||

p γ γ∂Φ
= =

∂
sε

σ s
 

 

 
(9) 

where γ  represents the plastic multiplier and connects the strain and the stress space. Lastly, a set 
of loading/unloading conditions is given as 

   00( , ) 0, ( , ),y yσ γ σ γΦ ≤ Φ> =σ σ 
 

(10) 

that have to be fulfilled. Since the material response is path-dependent, Eq. 5 is solved 
incrementally. For a ( )1n + -th load increment, it can be written in the form 

int
1 1 1| | ( ) 0ex

n n n+ + +− = =f f r u , where r  represents the residual that should be zero, exf  external load, 
and intf internal force defined as ( )int s= ∇⋅ ∇f σ u . Due to a nonlinear relationship between stress 
and strain, the residual is linearized as 

   
( ) 11

k ks
nn

δ
++

∇ ⋅ ∇ = −u rD
 

(11) 

where /= ∂ ∂σ εD . Eq. 11 is iteratively (index k ) solved for δu . After each k -th iteration, the 
displacement increment is updated as 1k k δ−∆ = ∆ +u u u . From here, the strain increment k∆ε  is 
determined and inserted into the integration model, where all other state variables are updated, 
solving Eqs. 6-10. When δu  is sufficiently small, the displacement is updated as 1n n+ = + ∆u u u . 
Since only temperature load is applied on the steel bars, the external load is defined as 

1 1
((3 2 ) )ex

n n
G Tλ α+ +

= ∇ ⋅ + ∆f I , where , ,Gλ α  and T∆  stand for the first and the second Lamé’s 
constants, the linear expansion coefficient, and the temperature difference ( 1n nT T T+∆ = − ), 
respectively. Between bars and the cooling bed, no contact is assumed. The Neumann type of 
boundary condition is prescribed on the whole boundary 0N/m= ⋅ =t σ n , where t represents the 
traction vector. Since only the derivatives of the displacement field are defined, two additional 
conditions are enforced to obtain a unique solution 

   
( ) 0d

Ω

Ω =∫u r
,          

( )( ) 0d
Ω

× Ω =∫ u r r
 

(12) 

where Ω  represents the bar cross-section area, and r is a position vector. The posed equations are 
solved within a plane strain assumption.  
Numerical Method 
Spatial discretization is performed using the RBF-FD method. The observed domain is discretized 
by a homogeneous distribution of the scattered discretization nodes - collocation nodes (CNs). For 
each CN, a set of closest local neighbours is determined that constructs the so-called local 
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subdomains [ ], 1,l alll NΩ ∈ , where allN  represents the number of all CNs. Inside each lΩ , the 
interpolation of a general function can be written as 

   
( ) ( ) ( ) ( ), ( ), ,

1 1 1

l l

l

N N MM

l l i l i l N i i l i l i
i i i

y pξ ξ ξ ξα α α
+

+
= = =

≈ Φ + = Ψ∑ ∑ ∑r r r r
 

 
(13) 

where ξ  is the index that runs over space dimensions dn , l N  is the number of CNs inside lΩ  and 
is here set to 13l N = , ,l i ξα  represents weight coefficients, and ( )l iΦ r  is the Radial Basis Function 
(RBF). Various types of RBFs can be used in the RBF-FD method. Here, 3rd order polyharmonic 
splines [15] (PHSs) are employed as ( ) ( )3|| || /l i l i l hΦ = −r r r , where l h  represents the average 
distance from the centre of lΩ  to its neighbours inside lΩ . The interpolant is augmented with 
monomials [ ]( ), 1,ip i M∈r , where 3M =  for the 2nd order augmentation 1 2 3, , 1p x p y p= = =

used here. Eq. 13 can be compactly written as a system of ( )d ln N M+  linear equations 

   
, , ,

1 1
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(14) 

Application of a linear differential operator L  on the interpolation function Eq. 13 acts only on 
the basis functions 

   
( ) ( ) ( ),

1 1 1

d d ln n N M

l l l i l i
i

L L y Lξχ χ χ ξχξ
χ χ

α
+

= = =

= ≈ Ψ∑ ∑ ∑y r r r
 

 
(15) 

Expressing weight coefficients from Eq. 14, we arrive at  

   
( ) ( ) ( )1

, , , ,
1 1 1 1 1 1

d l d l d ln N M n N M n N M

l l j l ij l i l j l j
j i j

L A L Wζ χζ ξχ ζ ξζξ
ζ χ ζ

γ γ
+ + +

−

= = = = = =

≈ Ψ =∑ ∑ ∑ ∑ ∑ ∑y r r r
 

 
(16) 

where the operator’s action on a function is now expressed as a weighted sum of known values
,l j ζγ  and operator coefficients ( ),l jW ξζ r . So, in order to discretize differential operators, the 

operator coefficients (OCs) should be determined for each lΩ . This is done as a pre-prosses step 
only once. 

Regarding the governing equation of the thermal model Eq. 1, OCs for the gradient and the 
Laplacian operator of the scalar field are computed. Time marching is performed with the forward 
Euler method. View factor matrix F, which includes the view factor j iF →  for each ( , )j i  DS pair, 
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is computed with the Monte Carlo method. Here 510vfN =  particles are shoot in random directions 
from j-th DS and checked which i-th DS is hit. Based on the number of hit particles in the i-th DS 
the j iF →  component is determined. In case DS is reflective, the vfN ζ⋅  number of random particles 
is bounced off, where ζ is the reflection coefficient. 

Discretization of the differential operators in the governing equation Eq. 11 of the mechanical 
model is performed slightly differently than in the thermal model for increasing stability. OCs of 

s∇  operator are not evaluated in CNs but on the 2nd order finite difference (FD) stencils prescribed 
separately to each CN when CN lies inside the domain. Then, the divergence operator is evaluated 
via the FD method. The distance between CN and its nearest point on the FD stencil equals / 2h , 
where h  is the distance to the nearest CN. On the boundary, where only OCs of s∇  are needed, 
the position of evaluation of COs is moved for / 2h  in the opposite side of the outward-facing 
normal vectors. With the OCs computed, a sparse global system of equations is assembled and 
solved to obtain the solution. Our future work will publish a more detailed description of the 
procedure. 
Simulation Procedure 
The thermal simulation starts by importing the bar’s discretized domain (CNs), placing it on the 
first stage 1p , and setting the material parameters based on the initial temperature ,0barT . For the 
determination of radiative heat fluxes, the CB is enclosed inside the virtual rectangle shown with 
the red contour in Fig. 1. The boundary of the first bar (also shown with the red contour in Fig. 1) 
is discretized on DSs. Then, the view factor matrix F is computed with DSs of the rectangle and 
the first bar. Three types of DSs are considered: the first one belongs to the heat shield with 
reflectivity plζ , the second to the steel bars with reflectivity barζ , and the third to all other surfaces 
with reflectivity surζ . The heat shield temperature and ambient temperature are set to plT  and surT
, respectively. With F computed, heat fluxes on the boundary are calculated using the remaining 
parameters shown in Table 1. The simulation runs until pt  is reached, where during time marching, 
the heat fluxes on the boundary and material parameters are updated before each time step. After 
that, the bar is moved to 2p  , and a new bar is positioned on 1p . Since 2 bars are now included, a 
new F is computed. The simulation runs again until pt  where 2 bars are now cooled. This process 
is repeated with 3, 4, and so on bars until the last position np  is reached. Then a new cycle is run 
where the bar on np  position is removed from the system. Adding the bars on the CB (from the 
left side) and removing them (from the right side) is repeated until the temperature difference at 
the time pt  in the centre of the bar on the last stage np  between two cycles is less than maxT∆ . 
With this procedure, the quasi-steady state temperature solution is obtained. 

The temperature solution is position (or stage) dependent ( , , ), [0, ]j i j pT t p t t∈r . For mechanical 
simulation, it is transformed to ( , ), [0, ]j j p nT t t t p∈r  since an arbitrary bar can be picked for the 
analysis. The mechanical model then incrementally applies the temperature load and considers the 
updating of the material parameters. 

In this work, we show the influence of the distance between bars bpx  and the position of the 
heat shield yp  on the thermal and mechanical solution fields. The study is performed for three 
different bpx s (R1, R2, R3). To study the same time window max p nt t p= ⋅ , different times on each 
stage pt  and a different number of maximum stages np  are applied. Also, three different yp s (P1, 
P2, P3) are investigated, as shown in Table 2. 
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Table 1. Constants used in the thermal model. 

[ ]ε ,ε ,ε /pl bar sur   [ ], /pl barζ ζ  [ ]/surζ  [ ]CplT °  [ ],0 CbarT °  [ ]CsurT °  2W/m Kh     [ ]max CT∆ °  

0.8  0.2 0 300 900 25 20 0.5 
Table 2. Parameters used in the case studies. 

 bpx  [m] pt  [s] np  [/]  yp  [m] 
R1 0.15 5 30 P1 0.3 
R2 0.3 10 15 P2 0.7 
R3 0.45 15 10 P3 1.3 

Results of the Thermal Model 
In Fig. 2, the temperature solution in the centre of the bar for the P1R1 case (TP1R1) and the 
difference to other cases Tdiff = TP1R1 − TPiRi are shown over time. In the P1R1 case, the bars are 
close to each other, and the heat shield is at its lowest point. Due to that, the slowest cooling is 
obtained. In all cases, the temperature sensitivity to the position of the heat shield is small. With a 
larger yp , the bar’s centre is additionally cooled for ~1°C. A comparison of R1 and R2 shows that 

bpx  has a more significant impact on the solution than yp . In the end, the centre point is cooled 
for ~5°C more. In case of increased spacing between the bars (compare R2 and R3), the 
temperature drop is much lower ~1°C.  
 

 

Fig. 2. P1R1 temperature solution in time at the centre of the bar and the difference to other 
cases. 

Fig. 3 shows the temperature solution at the end of the simulation over the field for all 
investigated cases. As shown before, observing cases from left to right (increasing bpx ), the 
temperature decreases more than changing the cases from top to bottom (increasing yp ). One can 
also observe that the field is not symmetric. This is a consequence of nonuniform heat fluxes that 
change with time. In all cases, the right half of the bar is cooled more. This happens since a bar on 
the right-hand side of some other observed bar is colder than the bar on the left-hand side, so the 
heat flux on the right is larger.   
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Fig. 3. Temperature of all cases as a function of bpx  and yp  at maxt = 150 s. 

Results of the Mechanical Model 
In Fig. 4, the results of the von Mises stress vmσ  and the accumulated plastic strain pε  are shown 
over time obtained in the centre point of the bar. Up to t≈ 5 s, the elastic response occurs where 
no plastic strain is present. Then the slope of the vmσ  changes and the bar is plastically deformed. 
One can see that vmσ  and pε  are changing mostly linearly with time. Small differences in solutions 
at the end of the simulation are obtained. As in the temperature solution, cases with the same bpx  
have a similar solution. 

 

 

 

Fig. 4. Von Mises stress (left) and accumulated plastic strain (right) in the centre of the bar over 
time. 

In Fig. 5, the von Mises stress is shown over the field for all cases at the end of the simulation. 
Similar asymmetry as in the temperature field can be observed. The highest stresses occur in the 
same area as the lowest temperatures.  

In Fig. 6, the initial shape is shown with a grey colour contour. For comparison with deformed 
shapes, it is shrunk by a factor of 16. The deformed contours, also shown in Fig. 6, are obtained 
by applying the displacement field solution, multiplied by 300, onto the initial geometry to make 
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the change visible. In the R1 case, the shrinkage is the smallest, and in the R3 case is the largest. 
All deformed shapes have a more elliptic shape and are also slightly tilted to the left. 
 

 

Fig. 5. Von Mises stress of all cases as a function of bpx  and yp  at maxt = 150 s. 

 

 

Fig. 6. Initial shape contour shrank by a factor of 16. Deformed contours are obtained by 
applying the displacement solution multiplied by a factor 300. 

Summary 
In this work, we presented the modelling of a thermo-mechanical response of steel bars on the 
cooling bed with the RBF-FD method. Nine cases with varying distances between bars and the 
position of the heat shield were investigated. We have shown that the solution fields and the final 
geometry are not symmetric. A reduction of distance between bars has proven to be much more 
dominant in reducing the cooling rate than the reduction of spacing between bars and the heat 
shield. The calculated accumulated plastic strain in all considered cases ranges up to ~0.1%, and 
the maximum von Mises stresses obtained are ~100 MPa. 

With this work, we have successfully demonstrated the use of the RBF-FD method on a 
complex industrial problem. In future work, a three-dimensional model will be implemented to 
capture also bending of the bars. 
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