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Abstract. Micro scale manufacturing technologies have been a productive area of research due to 
the increase in miniaturization in various industries. However, most of the know-how in 
conventional metal forming processes cannot be readily transferred into micro/meso forming 
processes due to the size effect. By incorporating the length scale into the formulation, strain 
gradient theories offer a viable solution to the issues arising from size-dependent complications. 
This paper aims at implementing a lower-order strain gradient plasticity (SGP) theory developed 
from the Taylor dislocation model to numerically analyze the impact of the plastic size effect on 
the forming of metallic materials. The material model together with local and nonlocal approaches 
for the strain gradient calculations is implemented in a commercial finite element (FE) code 
through user subroutines. The flat punch indentation problem is examined using the implemented 
code. 
Introduction 
Modeling plastic deformation on small scales has seen a significant increase of interest in recent 
years. Experimental observations show that many metal manufacturing processes are affected by 
noticeable sensitivity toward non-conventional deformation measures, resulting from size effects. 
A notable example being flat punch indentation. Having become a popular microforming process, 
metallic microscale devices fabricated from flat punches have been shown to outperform silicon-
based devices [1]. Since the manufacturing processes for these metal-based HARMS (High-aspect-
ratio microscale structures) are expensive and time-consuming, it is crucial to understand the 
mechanical interactions that take place when metals are micromolded. A better understanding of 
the interactions between the flat punch and the material might contribute to improving the strength 
and hardness of the final material [2]. Other examples of size dependent plasticity include MEMS, 
biosensors, and thin film applications which demonstrate significant size effects for sufficiently 
small specimens [3-5]. As the notion of smaller is stronger prevails, it has become vital to include 
gradient-dependent effects in the modeling of elastic-plastic materials. 

Since there is no internal length scale parameter, the classical continuum models of plasticity 
can only remain limited at the micron scale [6]. It is a widely known fact that dislocations are 
created, moved, and stored when a material is deformed, and the storing of dislocations causes the 
material to harden. Dislocations could be stored in two distinct mechanisms: they can either 
accumulate by randomly trapping one another or they can be stored as they are necessary for 
compatible deformation of the material. The former is termed statistically stored dislocations 
(SSDs) [7] while the latter is known as geometrically necessary dislocations (GNDs) [7-8]. The 
gradients of plastic shear in a material are related to geometrically necessary dislocations. 
Consequently, plastic strain gradients can be identified as the result of the response of the material 
to inhomogeneous deformation. 

A number of strain gradient (SG) frameworks have been proposed to bridge the gap between 
micromechanics and classical continuum-based plasticity theories [9-10]. In literature, strain 
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gradient theories have been separated into two classes [11]. The first class of SG theories referred 
to as higher-order theories, initially proposed by [12], uses higher-order stress terms as the work 
conjugate to the strain gradient. Due to this, the equilibrium equations need to be adapted and 
additional boundary conditions and tractions must be considered. The second class known as 
lower-order SG theories, initially proposed by [13], involves the conventional stress description, 
retains all of the features of classical J2 theory and requires no additional boundary conditions. 
These models incorporate the strain gradient effects in the calculation of the flow strength of the 
material. Therefore, they do not require any change in the equilibrium equations as only the 
hardening function of the material is modified. This feature essentially makes lower-order theories 
easy to implement in a commercial finite element code, however, the lack of higher-order stress 
terms and additional boundary conditions might cause inaccuracies, a notable example being the 
boundary layer phenomenon [6].  

This study aims to use the widely popular Conventional Mechanism-Based Strain Gradient 
(CMSG) plasticity theory to model size-dependent behavior in small scale metal forming 
processes. CMSG, which is based on the Taylor dislocation model [14], is the lower-order 
counterpart of the more general higher-order Mechanism-Based Strain Gradient (MSG) theory. 
Further, two distinct approaches for calculating strain gradients are implemented. The first 
approach uses a local, intra-element level numerical differentiation scheme in which the plastic 
strain increments are interpolated through their values at the integration points and the strain 
gradient is evaluated as a common value at the centroid of each element. The second approach 
considers the calculation of strain gradients on an inter-element level by extrapolating the plastic 
strain from integration points to nodes and performs a nodal averaging scheme to nonlocalize the 
gradient. Both approaches are implemented in a three-dimensional setting via User Material 
Subroutines (UMAT) in the commercial finite element solver ABAQUS.  

The paper is outlined as follows. The constitutive model together with the strain gradient 
calculation methods are explained in Section 2, a benchmark problem to verify the implementation 
is addressed in Section 3. The obtained results for flat punch indentation simulations are presented 
in Section 4, which is finally followed by summary and outlook in Section 5. 
Conventional Mechanism-Based Strain Gradient (CMSG) Plasticity 
Taylor Dislocation Model. The conventional mechanism-based strain gradient plasticity theory is 
based on the Taylor model of dislocation hardening [14]. The shear flow stress is related to the 
dislocation density by  

τ=αμb�ρ (1) 

where μ is the shear modulus, b is the Burgers vector and α is an empirical coefficient, which takes 
values between 0.3 and 0.5. The dislocation density ρ is decomposed into ρS for statistically stored 
dislocations (SSDs) [7] and ρG for geometrically necessary dislocations (GNDs) 

ρ=ρS+ρG. (2) 

Effective strain gradient can be related to the GND density, by 

ρG=r ̅ η
p 
b

 (3) 

where r,̅  is a Nye-factor and is around 1.90 for the Face Centered-Cubic (FCC) polycrystals [15]. 
This parameter reflects the effect of crystallography on the distribution of GNDs. The tensile flow 
stress σflow is then related to the shear flow stress τ, by 



Material Forming - ESAFORM 2023  Materials Research Forum LLC 
Materials Research Proceedings 28 (2023) 1453-1462  https://doi.org/10.21741/9781644902479-157 

 

 
1455 

σflow=Mαμb�ρS+r ̅ η
p

b
  (4) 

where M is the Taylor factor (M =  3.06 for fcc metals), which serves as an isotropic interpretation 
of the crystalline anisotropy at the continuum level [16]. 

By using the formula σflow = σreff(εp), where σref is a reference stress and f is a 
nondimensional function derived from the uniaxial stress-strain curve, it is also possible to link 
the flow stress for uniaxial tension to the plastic strain εp. Since the plastic strain gradient ηp 
vanishes for the uniaxial tension, the SSD density can be determined from Eq. 4, as 

ρS=[σreff(εp)/(Mαμb)] 2 (5) 

Then the flow stress in Eq. 4 becomes 

σflow=�[σreff(εp)]2+M2rα̅2μ2bηp =σref�f2(εp)+𝑙𝑙ηp  (6) 

where 𝑙𝑙 is the is the intrinsic material length scale in strain gradient plasticity and is given explicitly 
by 

𝑙𝑙=M2rα̅2 � μ
σref
�

2
b=18α2 � μ

σref
�

2
b (7) 

The intrinsic material length 𝑙𝑙 for typical metallic materials is usually on the scale of microns. Note 
that from Eq. 6, as the material length scale parameter 𝑙𝑙 vanishes, conventional J2 plasticity 
relations are recovered. 
 
Constitutive Relations. The governing equations of CMSG plasticity are nearly identical to those 
of conventional plasticity because higher order terms are not included. The volumetric and 
deviatoric strain rates are obtained as 

ε̇kk= σ̇kk
3K

,    ε̇ij
' =

 σ̇ij
'

2μ
+ 3ε̇p

2σe
σ̇ij

'  (8) 

From the Taylor dislocation model, the equivalent plastic strain rate ε̇p includes the flow stress. In 
order to incorporate the gradient effects without higher-order stress terms, ε̇p is replaced by a 
viscoplastic formulation to express plastic strain gradient in terms of effective stress σe rather than 
its rate σ̇e (for more details see [17]) 

ε̇p=ε̇ � σe
σflow 

�
m

=ε̇ � σe

σref�f2(εp)+𝑙𝑙ηp
�

m

 (9) 

The substitution of Eq. 9 into Eqs. 8 gives the strain rate which then can be inverted to get the 
stress-rate in terms of the stain-rate as follows 

σ̇ij=Kε̇kkδij+2μ � ε̇ij
' - 3ε̇p

2σe
� σe

σref�f2(εp)+𝑙𝑙ηp
�

m

σ̇ij
' � (10) 
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Above constitutive relations allow for gradient effects without the higher order stress terms. 
Since the effective plastic strain gradient reduces the plastic incremental moduli, it falls under the 
lower-order framework of strain gradient plasticity theories [13].  Effective strain gradient ηp 
definition is the same with Gao et. al [6]. The quadratic invariants of three models of geometrically 
necessary dislocations for bending, torsion, and void formation serves as the basis for calculating 
the effective strain gradient. The resulting expression reads 

ηp=εik,j
p +εjk,i

p -εij,k
p  (11) 

 
Finite Element Implementation. In this study, CMSG framework has been implemented in 
ABAQUS via user material subroutine (UMAT) in a three-dimensional setting. The only 
additional task beyond classical plasticity is the assessment of the plastic strain gradient within the 
UMAT as the equilibrium equations, boundary conditions, and kinematic relationships between 
the strain and displacement are identical to those in classical plasticity. For the calculation of the 
effective strain gradient ηp, two different approaches have been utilized, the first approach 
evaluates the strain gradient at the local element level. Plastic strains are interpolated in the 
isoparametric space through the shape functions as 

εij
p=∑ Nk(ξ,η,ζ) �εij,IPT

p �
k

8
k=1  (12) 

such that, the plastic strains εij
p  represents the interpolated values within the element, obtained from 

the values at the integration points �εij,IPT
p �

k
. Where Nk(ξ,η,ζ) is the shape function vector, with 

three-dimensional linear shape functions adapted as 

Nk= 1
8
�1+ξξi��1+ηηi��1+ζζi� (13) 

In this context, the implementations are considered on an 8-noded full integration C3D8 elements 
from ABAQUS Standard element library, with the node and integration points numbering given 
in Fig. 1. 
 

Fig. 1. Numbering scheme used in the Gauss point-based interpolation. 
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Derivatives of the shape functions with respect to global coordinates can be obtained by using the 
chain rule and the inverse of the Jacobian. 

�∂N
∂x

∂N
∂y

∂N
∂z�

T
=J-1 �∂N

∂ξ
∂N
∂η

∂N
∂ζ�

T
 (14) 

where J is the element Jacobian matrix describing the derivatives of the global coordinates in 
relation to the natural coordinate system. With the plastic strain gradient definition from Eq. 11, 
components of ηp within the element can be computed as 

ηijk
p =∑ ∂Nm

∂xj
εik,IPT

p +∑ ∂Nm
∂xi

εjk,IPT
p -8

m=1 ∑ ∂Nm
∂xk

εij,IPT
p8

m=1
8
m=1  (15) 

where xi for i=1,2,3 denote x, y, z coordinates respectively. In this method, since the values at the 
integration points are interpolated, the plastic strains obtained stay within the confines of the 
element, and effective plastic strain  ηp, is a single value evaluated at the centroid. This is clearly 
a local approach as computations are done on a single element basis. For more details related to 
this approach the reader is referred to [18].  

In the nonlocal approach, the plastic strain values are extrapolated to the nodes. This is done by 
inverting the shape function matrix used to interpolate nodal values to integration points, 

εij,IPT
p =∑ Nk(ξ,η,ζ) �εij,N

p �
k

8
k=1  (16) 

εij,N
p =∑ Nk

-1(ξ,η,ζ) �εij,IPT
p �

k
8
k=1  (17) 

where εij,N
p  denotes the extrapolated nodal values of the plastic strains and εij,IPT

p  is again the plastic 
strains at the integration points. Hence, plastic strain values at the nodes can be obtained. However, 
because each node is tied to several elements, different plastic strain values will be assigned to the 
same node for each element to which it is attached. To overcome this and ensure continuity of an 
otherwise discontinuous field, a nodal averaging scheme is employed. Fig. 2 depicts the basic 
concept of this technique for a one-dimensional case. After nodal averaging is performed, using 
the shape function derivatives and the element Jacobian, the gradient of plastic strain can be 
calculated at the position of each integration point. 
 

∇εij,IPT
p =

∂εij,IPT
p

∂x
=

∂εij,IPT
p

∂ψ
∂ψ
∂x

=
∂�∑ Nk�εij,N

p �
k

8
k=1 �

∂ψ
∂ψ
∂x

 (18) 

Following this, the gradient of the plastic strains can be written concisely as  

∇εij,IPT
p =∇ψ�∑ Nk

8
k=1 � �εij,N

p �
k

J-1 (19) 

∇ψ�∑ Nk
8
k=1 � describes the gradient of shape functions with respect to isoparametric coordinates. 

Therefore, Eq. 11 for the nonlocal approach can be written as 

ηijk
p =∑ ∂Nm

∂ψj
εik,N

p J-1+∑ ∂Nm
∂ψi

εjk,N
p J-1-8

m=1 ∑ ∂Nm
∂ψk

εij,N
p J-18

m=1
8
m=1  (20) 
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where ψi for i=1,2,3 denote ξ, η, ζ coordinates in isoparametric space respectively. With this 
approach, the strain gradients are assigned to each integration point separately. Because nodal 
averaging takes into account the effects of neighboring elements, the strain gradient is 
nonlocalized. 

 
Fig. 2. Plastic strain field along four one-dimensional elements. 

Numerical Example 
Uniaxial tension subject to a constant body force. A bar subjected to a constant body force is 
analyzed to evaluate the mechanism-based strain gradient plasticity implementation and assess the 
capacity for depicting the size dependency. Simulations with local and nonlocal approaches are 
performed and compared. The model, inspired by the works of [17] is a basic example where 
gradient effects can be observed, consists of a uniform mesh of 10x10x100 C3D8 elements with 
100 elements through the length of the bar. 

The nodes at the top of the bar are constrained in all three directions, and the nodes at the bottom 
of the bar are constrained in z and y directions but not in x direction. A constant body force g is 
applied to the bar to induce a gradient along x direction. Also, a traction σ� is applied at the far end.  
A sketch of the model, with the mesh is illustrated in Fig. 3. 

 

 
Fig. 3. Boundary conditions and mesh for the gravity loaded bar. 

 
Loads are given in proportion to the yield strength σY, such that for a material with ν = 0.3 and  

σY/E = 0.002, the traction boundary condition is σ� = σY, and the body force, g = σY/L0. Further, 
for isotropic hardening, a classical power law hardening relation is adopted, with σref =
σY(E/σY)N and f(εp) = (εp + σY/E)N in Eq. 10. Throughout the study, the strain hardening 
exponent and the yield strength have been taken as N=0.2 and σY=400 [MPa], respectively. 
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Size dependency for several different length scales is illustrated in Fig. 4. The curves show the 

plastic strain distribution over the length of the bar. The classical J2 response is recovered if the 
length scale for either method is zero or a small value that is non comparable with the characteristic 
length of the material. Moreover, raising this value leads to a stronger material response. However, 
results from the two methods are different. Nonlocal approach consistently predicts lower plastic 
strain distributions. This could be attributed to the nodal averaging scheme, which averages out 
the high plastic strains onto the neighboring elements, consequently smoothing out the distribution. 
Flat Punch Indentation 
Flat punch indentation has found many applications with the advance of microforming 
applications. Experiments on metals such as aluminum showed that, besides the required punch  

 
Fig. 5. Frontal view for the flat punch indentation with, W=H=50 μm, a=0.3W and 𝛥𝛥 = 1.5 𝜇𝜇𝜇𝜇. 

 
load, both the size and shape of imprinted features are affected by the scale of the as substantial 
details are lost when the characteristic length is on the order of 10 μm [19]. Frontal view sketch 
and mesh of a three-dimensional flat punch indentation problem is highlighted in Fig. 5. 

In the mesh, 42849 three-dimensional hex elements are used to model the process using a single 
layer through x3. Only half of the sample is modeled by exploiting the symmetry boundary 
conditions on the left face through x1 direction. A rigid flat indenter of half width a is given a 
downward displacement of Δ and the mesh is refined around the edges of the punch where highest 
stresses are obtained. The material parameters and the hardening function are the same with the 
earlier example. The downwards displacement is set to be Δ=1.5 μm and the friction between the 
contact surfaces is modeled with Coulomb friction with a friction coefficient of μ=0.2. The width 
and the height of the model are equal with, W=H=50 μm and the indenter width a=0.3W=15 μm.  

Fig. 4. Plastic strain distribution for bar loaded with 
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 Fig. 6 shows dimensionless displacement versus the dimensionless location for different length 
scale ratios, together with the classical plasticity solution. Indenter half width a is kept constant. 
Details of the imprint get lost as the length scale parameter increases. This effect is called 
indentation size effect (ISE) and agrees well with the experimental observation of [20] and 
numerical simulations of [19]. Again, the nonlocal approach, predicts higher resistance to 
deformation in contrast to the local approach though the difference is small. 

Fig. 7 shows the equivalent stress contours for the local and nonlocal solution. Expectedly, as 
the length scale increases stresses also increase. Moreover, even though the patterns of 
deformations left by the imprint are quite similar, stress contours show a difference. For the 
nonlocal approach, the stresses are diffused owing to the nodal averaging. 

 

 
Fig. 6. Deformation patterns of imprints for different ratios of length scale l and constant 

indenter half width a. 
Summary 
In this paper, size dependency in plastic deformation is investigated. A lower order strain gradient 
theory is implemented and two different methods for strain gradient calculations are discussed. It 
has been observed that nonlocal approach consistently predicts stronger material response, 
however the difference between the two approaches is small. It is noted that, for the flat punch 
indentation problem the length scale has a notable effect on the deformation pattern, pile up 
characteristics, and the stress distributions, yet the simulations done in this paper unfortunately 
remain at the qualitative level. 

Our ongoing focus is on performing more detailed simulations for flat punch indentation 
accounting for realistic materials with actual experimental data. Using this approach, it would be 
interesting to predict the behaviors of real materials response and study deeply the underlying 
mechanisms of plastic gradient effects on micro-sized materials. 
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Fig. 3. Stress contours for the flat punch indentation for local and nonlocal approaches for 
different length scales a) l/a =1/3 b) l/a=2/3 c) l/a = 4/3. 
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