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Abstract. The stochastic modelling and quantification of the various sources of uncertainty 
associated with sheet metal forming processes, usually requires a large computational cost to 
obtain accurate results. In this work, a polynomial chaos expansion metamodel is used in order to 
reduce the computational cost of the uncertainty quantification (through Sobol’s indices). The 
metamodel allows to establish mathematical relationships between the square cup forming results 
and the uncertainty sources associated with the material behaviour and process conditions. Then, 
sensitivity indices are estimated with the trained metamodel, without resorting to additional 
numerical simulations. The indices obtained with the metamodel were compared to those obtained 
with the traditional approach based on a quasi-Monte Carlo method. The metamodel allowed to 
reduce the computational cost in about 90% when compared to the traditional approach, without 
compromising the accuracy of the results. 
Introduction 
Sheet metal forming processes are among the most common and important metal working 
operations associated with the automotive, aeronautics and metalworking industries [1]. Numerical 
simulation is a well-established tool for the design and optimization of these processes [2]. 
However, the traditional use of the finite element method (FEM) is based on a deterministic 
approach [3], which does not take into account the various sources of uncertainty that are inevitable 
in a real industrial environment. These sources of uncertainty have a significant effect on the 
quality of the final product [4,5], leading to an inefficient production and, eventually, to the 
expensive redesign of the forming process. For all these reasons and due to the increasing 
availability of big data coupled with the growth of computer performance, the uncertainty analysis 
of these processes is a current scientific and industrial interest [1,6-8].  

In recent years, distinct methods, such as, Monte Carlo Simulation [7-9], design of experiments 
[3,8] and metamodels [1,10] have been used to model the influence of uncertainty. Sensitivity 
analyses are used to quantify the influence of each uncertainty source in the variability of the 
forming results [3,11-13]. Variance-based sensitivity analysis (Sobol’s indices [14]) is one of the 
most common methods to quantify this influence [6]. However, this analysis usually requires a 
large computational cost in order to obtain accurate sensitivity results [6]. This drawback 
contributes to the computational inefficiency of the uncertainty analysis, delaying its full and 
suitable employment in industry. 
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This work presents a numerical study on the influence of the material and process uncertainty 
in the results of a square cup forming process. The square cup test was chosen for two main 
reasons: (i) it is a commonly used benchmark test to represent sheet metal forming processes 
[1,6,15-18]; (ii) it is a relatively fast process to simulate, which is suitable for performing a large 
number of numerical simulations. A polynomial chaos expansion (PCE) metamodel is used for 
reducing the computational cost of the Sobol’s indices assessment [19]. The PCE metamodel 
establishes mathematical relationships between the square cup forming results and the uncertainty 
sources associated with the elastoplastic material properties of the blank (Hooke’s law parameters, 
hardening law parameters, anisotropy coefficients) and process conditions (blank thickness, 
friction coefficient and the blank holder force). Then, Sobol’s indices are estimated with the trained 
PCE metamodel, without resorting to additional numerical simulations. The indices obtained with 
the PCE metamodel were compared to those obtained with the traditional approach based on a 
quasi-Monte Carlo (q-MC) method. 
Stochastic Model 
Numerical Model. The square cup forming process was modelled with the same numerical model 
used in a previous work [6], as shown in Fig. 1. The geometry of the tools was adapted from the 
NUMISHEET’ 93 benchmark [18]. The square blank has an initial thickness 𝑡𝑡0, and a side length 
of 75 mm. The numerical simulation of the forming process consists of three phases: (i) First, the 
blank holder moves downwards, pressing the blank against the die, until a prearranged black holder 
force (𝐵𝐵𝐵𝐵𝐵𝐵) is reached; (ii) Then, the punch moves 40 mm downwards, drawing the blank into 
the die, with a constant BHF; (iii) The final step consists in removing the tools (black holder, punch 
and die), resulting in the springback of the square cup. The numerical simulations were performed 
with the software DD3IMP (Deep Drawing 3D Implicit Code) [20]. Only a quarter of the model 
is simulated due to symmetries in the material, geometry and boundary conditions, and to reduce 
the computational cost. The blank is discretized with 1800 (8-node hexahedral solid) elements, 
with 2 elements in thickness and 30x30 elements in the sheet plane. The contact between the blank 
and the tools is described by the Coulomb’s law with a constant friction coefficient, 𝜇𝜇0. In average, 
the duration of each simulation is approximately 4 minutes and 34 seconds in a computer equipped 
with an Intel® Core™ i7-8700K Hexa-Core processor (4.7 GHz). 

 

 
Fig. 1. Square cup forming process: (a) Numerical model [6]; (b) Dimensions of the tools in mm 

[6]. 
The mechanical behaviour of the metal sheet is modelled by: (i) the generalized Hooke’s law, 

where 𝐸𝐸 and 𝜈𝜈 are the Young’s modulus and the Poisson’s ratio, respectively; (ii) the Swift 
hardening law; (ii) and the Hill’48 yield criterion. The yield criterion is defined by: 
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𝐵𝐵(𝜎𝜎𝑦𝑦𝑦𝑦 − 𝜎𝜎𝑧𝑧𝑧𝑧)2 + 𝐺𝐺(𝜎𝜎𝑧𝑧𝑧𝑧 − 𝜎𝜎𝑥𝑥𝑥𝑥)2 + 𝐵𝐵(𝜎𝜎𝑥𝑥𝑥𝑥 − 𝜎𝜎𝑦𝑦𝑦𝑦)2 + 2𝐿𝐿𝜏𝜏𝑦𝑦𝑧𝑧2 + 2𝑀𝑀𝜏𝜏𝑥𝑥𝑧𝑧2 + 2𝑁𝑁𝜏𝜏𝑥𝑥𝑦𝑦2 = 𝑌𝑌2,           (1) 

where 𝜎𝜎𝑥𝑥𝑥𝑥, 𝜎𝜎𝑦𝑦𝑦𝑦, 𝜎𝜎𝑧𝑧𝑧𝑧, 𝜏𝜏𝑥𝑥𝑦𝑦, 𝜏𝜏𝑦𝑦𝑧𝑧 and 𝜏𝜏𝑥𝑥𝑧𝑧 are the components of the Cauchy stress tensor; 𝑌𝑌 is the yield 
stress; 𝐵𝐵, 𝐺𝐺, 𝐵𝐵, 𝐿𝐿, 𝑀𝑀 and 𝑁𝑁 are anisotropy parameters. The parameters follow the condition 𝐺𝐺 +
𝐵𝐵 = 1 and  𝐿𝐿= 𝑀𝑀 = 1.5 (von Mises). 𝐵𝐵, 𝐺𝐺, 𝐵𝐵 and 𝑁𝑁 are obtained from the anisotropy coefficients 
𝑟𝑟0, 𝑟𝑟45 and 𝑟𝑟90, by: 

𝐵𝐵 = 𝑟𝑟0
𝑟𝑟90(𝑟𝑟0 + 1)� ;  𝐺𝐺 = 1

𝑟𝑟0 + 1� ;  𝐵𝐵 = 𝑟𝑟0
𝑟𝑟0 + 1�     

𝑁𝑁 = (𝑟𝑟0 + 𝑟𝑟90)(2𝑟𝑟45 + 1)
2𝑟𝑟90(𝑟𝑟0 + 1)�    (2) 

The Swift hardening law is given by: 

𝑌𝑌 = 𝐶𝐶(𝜀𝜀0 + 𝜀𝜀�̅�𝑝)𝑛𝑛 (3) 

where 𝜀𝜀�̅�𝑝 is the equivalent plastic strain; 𝑛𝑛, 𝐶𝐶 and 𝜀𝜀0 are hardening parameters. The initial yield 
stress is 𝑌𝑌0 = 𝐶𝐶(𝜀𝜀0)𝑛𝑛. 

 
Input and Output Parameters. The sensitivity analysis is focused on 11 input parameters, 8 

associated with the material behaviour (𝐸𝐸, 𝜈𝜈, 𝑛𝑛, 𝐶𝐶, 𝑌𝑌0, 𝑟𝑟0, 𝑟𝑟45 and 𝑟𝑟90) and 3 associated with the 
blank thickness, 𝑡𝑡0, friction coefficient, 𝜇𝜇0, and blank holder force, 𝐵𝐵𝐵𝐵𝐵𝐵. The uncertainty of the 
input parameters is assumed to follow a normal distribution characterized by a mean, 𝜇𝜇, and a 
standard deviation, 𝜎𝜎, whose values are given in Table 1 [6]. 

 
Table 1. Mean and standard deviation of the normal distribution associated to the uncertainty of 

each input parameter [6]. 

 𝐸𝐸 [GPa] 𝜈𝜈 𝑛𝑛 𝐶𝐶 [MPa] 𝑌𝑌0 [MPa] 𝑟𝑟0 𝑟𝑟45 𝑟𝑟90 𝑡𝑡0 [mm] 𝜇𝜇0 𝐵𝐵𝐵𝐵𝐵𝐵 [N] 

𝜇𝜇 206.00 0.300 0.259 565.32 157.12 1.790 1.510 2.270 0.780 0.1440 2450.0 

𝜎𝜎 3.85 0.015 0.018 26.85 7.16 0.051 0.037 0.121 0.013 0.0288 122.5 
 

The uncertainty influence was analysed for 4 output parameters associated with the forming 
results, namely, the punch force (𝑃𝑃𝐵𝐵), the equivalent plastic strain (𝜀𝜀�̅�𝑝), the thickness change (𝑇𝑇𝐶𝐶) 
and the geometry change (𝐺𝐺𝐶𝐶). The 𝑃𝑃𝐵𝐵 and the 𝜀𝜀�̅�𝑝 values are directly obtained from the numerical 
simulation, while the 𝑇𝑇𝐶𝐶 and the 𝐺𝐺𝐶𝐶 are defined by [6]: 

𝑇𝑇𝐶𝐶 [%] = 100 × �𝑡𝑡0 − 𝑡𝑡𝑓𝑓� 𝑡𝑡0⁄  (4) 

𝐺𝐺𝐶𝐶 [𝑚𝑚𝑚𝑚] = ���̅�𝑥𝑓𝑓 − 𝑥𝑥𝑓𝑓�
2

+ �𝑦𝑦�𝑓𝑓 − 𝑦𝑦𝑓𝑓�
2

+ �𝑧𝑧�̅�𝑓 − 𝑧𝑧𝑓𝑓�
2
 (5) 

where 𝑡𝑡0 and 𝑡𝑡𝑓𝑓 are the initial and final sheet thickness, respectively, in a given region of the square 
cup; �𝑥𝑥𝑓𝑓 ,𝑦𝑦𝑓𝑓 , 𝑧𝑧𝑓𝑓� and ��̅�𝑥𝑓𝑓 ,𝑦𝑦�𝑓𝑓 , 𝑧𝑧�̅�𝑓� are, respectively, the final spatial position of a given node for the 
numerical simulation with and without uncertainty (i.e., using the mean values of Table 1). The 
𝐺𝐺𝐶𝐶 quantifies the positional difference of a given node between the deterministic and the stochastic 
simulation. In this work, only the maximum values of the four outputs were analysed. 
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Sensitivity Analysis 
Sobol’s Indices. Sobol’s Indices are a sensitivity measure of the influence of the input 

parameters on the output parameters [14]. Two distinct sensitivity indices can be used to quantify 
this influence, the 1st order indices, 𝑆𝑆𝑖𝑖, and the total sensitivity indices, 𝑆𝑆𝑖𝑖𝑇𝑇, which can be defined 
as follows [14]: 

𝑆𝑆𝑖𝑖 = 𝑉𝑉[𝐸𝐸(y|𝑥𝑥𝑖𝑖)]
𝑉𝑉(y)�    (6) 

𝑆𝑆𝑖𝑖𝑇𝑇 = 1 − �𝑉𝑉[𝐸𝐸(y|𝑥𝑥~𝑖𝑖)]
𝑉𝑉(y)� �   (7) 

where 𝑉𝑉(y) is the unconditional variance of the result y; 𝑉𝑉[𝐸𝐸(y|𝑥𝑥𝑖𝑖)] is the conditional variance of 
the expected value of y when all input parameters, but 𝑥𝑥𝑖𝑖, are fixed; and 𝑉𝑉[(y|𝑥𝑥~𝑖𝑖)] is the 
conditional variance of the expected value of y when only the input parameter 𝑥𝑥𝑖𝑖 is fixed. The 1st 
order indices, 𝑆𝑆𝑖𝑖, quantify the individual influence of each input parameter, 𝑥𝑥𝑖𝑖, on the result 𝑦𝑦; 
while the total sensitivity indices, 𝑆𝑆𝑖𝑖𝑇𝑇, quantify not only the individual influence of each input 
parameter, 𝑥𝑥𝑖𝑖, on the result 𝑦𝑦, but also the influence of the interactions between the input parameter 
𝑥𝑥𝑖𝑖 and the remaining, on the result 𝑦𝑦.  

The indices 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑖𝑖𝑇𝑇 were already computed and published for the above model of the square 
cup forming process [6]. These indices were computed with the traditional method proposed in 
[21], and using the estimators proposed by [22], which allow to significantly improve the 
stabilization of the indices for a lower number of numerical simulations. A base sample of 3000 
simulations was generated with a Sobol’s sequence [23], in order to also achieve a faster 
stabilization. For a base sample of 3000 simulations, a total of 39000 simulations were needed to 
evaluate the sensitivity indices for the 11 input parameters, accordingly to the traditional procedure 
[21]. The chosen size of the base sample guarantees the stabilization of the sensitivity indices [6]. 

Polynomial Chaos Expansion. A Polynomial Chaos Expansion (PCE) metamodel is used to 
reduce the computational cost of the Sobol’s indices evaluation [21]. The PCE metamodel allows 
to estimate the outputs (i.e., forming results), y𝑃𝑃𝑃𝑃𝑃𝑃(𝐱𝐱), as a function of the input parameters (i.e., 
uncertainty sources), 𝐱𝐱, by using an orthogonal polynomial basis, Ψ𝛂𝛂. The output value predicted 
by the PCE metamodel is given by [19]: 

y𝑃𝑃𝑃𝑃𝑃𝑃(𝐱𝐱)=∑ 𝛽𝛽𝛂𝛂Ψ𝛂𝛂(𝐱𝐱)𝛂𝛂 ∈A   (8) 

where 𝛽𝛽𝛂𝛂 are expansion coefficients and A is a set of pre-selected multi-index 𝛂𝛂 = [𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑘𝑘] 
(𝑘𝑘 is the number of input parameters). The elements 𝛼𝛼𝑖𝑖 indicates the degree of the polynomial 
associated with the input parameter 𝑥𝑥𝑖𝑖. Hermite polynomials are used to build the polynomial 
basis, Ψ𝛂𝛂, since the input variables follow a gaussian distribution (see Table 1) [19]. The set 𝛃𝛃 of 
expansion coefficients 𝛽𝛽𝛂𝛂 is determined with the ordinary least squares method [24]: 

𝛃𝛃 = (𝚿𝚿(𝐱𝐱)𝚿𝚿(𝐱𝐱)T)−1𝚿𝚿(𝐱𝐱)𝐲𝐲∗(𝐱𝐱)   (9) 

where, 𝐲𝐲∗(𝐱𝐱) is a set of 𝑞𝑞 output results obtained with the 𝑞𝑞 training simulations of the numerical 
model; and 𝚿𝚿(𝐱𝐱) is a 𝑞𝑞 × 𝑞𝑞 matrix of Hermitian polynomials of degree 𝑚𝑚. More details about the 
construction of 𝚿𝚿(𝐱𝐱) can be found in [19]. To avoid a high computational cost, only polynomials 
up to degree 𝑚𝑚 ≤ 3 and low order iterations between input variables are considered, following a 
hyperbolic truncation scheme [25]. 

Due to the orthogonality property of the polynomial basis, it is possible to directly evaluated 
the 1st order Sobol’s indices by [26]:  
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  𝑆𝑆𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 =
� (𝛽𝛽𝛂𝛂2)𝛂𝛂 ∈A*

� (𝛽𝛽𝛂𝛂2)𝛂𝛂 ∈A
�                   (10) 

where A* is a subset of A in which the multi-index 𝛂𝛂 is only associated to the input variable 𝑥𝑥𝑖𝑖 
(i.e., no other input variable is associated to the multi-index). The total Sobol’s indices can be 
evaluated by [26]:  

  𝑆𝑆𝑖𝑖𝑇𝑇
𝑃𝑃𝑃𝑃𝑃𝑃 =

� (𝛽𝛽𝛂𝛂2)𝛂𝛂 ∈A𝐓𝐓

� (𝛽𝛽𝛂𝛂2)𝛂𝛂 ∈A
�   (11) 

where A𝐓𝐓 is a subset of A in which the multi-index 𝛂𝛂 is associated to the input variable 𝑥𝑥𝑖𝑖, even if 
𝛂𝛂 is simultaneously associated with other input variables. Based on the above equations it is 
evident that the Sobol’s indices are instantaneously calculated after the evaluation of the expansion 
coefficients 𝛽𝛽𝛂𝛂, i.e., after the metamodel training. 

The metamodel was trained with the same 3000 base simulations, previously used to compute 
the indices 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑖𝑖𝑇𝑇 with the traditional approach. Four metamodels were trained each one for a 
given output 𝑃𝑃𝐵𝐵, 𝜀𝜀�̅�𝑝, 𝑇𝑇𝐶𝐶 and 𝐺𝐺𝐶𝐶. The metamodel was tested for other 1000 simulations by 
comparing the predicted PCE output, y𝑃𝑃𝑃𝑃𝑃𝑃(𝐱𝐱∗), with the one assessed with the testing simulations 
y(𝐱𝐱∗). The performance of each metamodel was evaluated with the root-mean-square error, √𝜖𝜖, 
and the coefficient of determination, 𝑅𝑅2, given by [26]:  

√𝜖𝜖 = �1
𝑞𝑞∗� � �y(𝐱𝐱𝑖𝑖∗) − 𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃(𝐱𝐱𝑖𝑖∗)�

2𝑞𝑞∗

𝑖𝑖=1
 (12) 

𝑅𝑅2 = 1 − 𝜖𝜖
𝑉𝑉(𝐲𝐲(𝐱𝐱∗))�  (13) 

where 𝑞𝑞∗ is the number of testing simulations, y(𝐱𝐱𝑖𝑖∗) and 𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃(𝐱𝐱𝑖𝑖∗) are the simulation and predicted 
output for the set of input parameters, 𝐱𝐱𝑖𝑖∗, of the 𝑖𝑖th testing simulation. 𝑉𝑉(𝐲𝐲(𝐱𝐱∗)) is the variance of 
the outputs evaluated for the 𝑞𝑞∗ testing simulations. The root-mean-square error, √𝜖𝜖, and the 
coefficient of determination, 𝑅𝑅2, of the metamodels trained for each output, are indicated in Table 
2. 

The PCE metamodels for the outputs 𝑃𝑃𝐵𝐵, 𝜀𝜀�̅�𝑝 and 𝑇𝑇𝐶𝐶 achieved the best performances, with 𝑅𝑅2 
values close to 1. On the other hand, the PCE metamodel for the output 𝐺𝐺𝐶𝐶 had the poorest 
performance, with a 𝑅𝑅2 value of 0.8834. Fig. 2 compares the simulated outputs of the testing 
dataset, y(𝐱𝐱𝑖𝑖∗), with those predicted by the PCE, 𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃(𝐱𝐱𝑖𝑖∗). It can be observed that the PCE 
metamodels were able to accurately predict the simulation outputs, with the exception of 𝐺𝐺𝐶𝐶.  

 
Table 2. Root-mean-square error and coefficient of determination of the metamodels trained for 

the outputs 𝑃𝑃𝐵𝐵, 𝜀𝜀�̅�𝑝, 𝑇𝑇𝐶𝐶 and 𝐺𝐺𝐶𝐶. 

 𝑃𝑃𝐵𝐵 𝜀𝜀�̅�𝑝 𝑇𝑇𝐶𝐶 𝐺𝐺𝐶𝐶 

√𝜖𝜖 0.2207[kN] 0.0036 0.0841% 0.0412[mm] 

𝑅𝑅2 0.9956 0.9734 0.9845 0.8834 
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Fig. 2. Predicted (PCE metamodel) and simulated outputs: a) 𝑃𝑃𝐵𝐵 [kN]; b) 𝜀𝜀�̅�𝑝; c) 𝑇𝑇𝐶𝐶 [%]; and d) 
𝐺𝐺𝐶𝐶 [mm]. The dashed line represents the optimal metamodel response, in which predicted 

outputs are equal to simulated outputs. 
 

 
 

Sensitivity Results 
In this section, the Sobol’s sensitivity indices evaluated with the traditional approach are compared 
with those evaluated using the PCE metamodel. In this context, Fig. 3 and Fig. 4 show the 1st order 
and the total Sobol’s sensitive indices, respectively, for the outputs 𝑃𝑃𝐵𝐵, 𝜀𝜀�̅�𝑝, 𝑇𝑇𝐶𝐶 and 𝐺𝐺𝐶𝐶. 
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Fig. 3. 1st order Sobol’s indices, computed with the traditional approach and with the PCE 
metamodel, for the outputs: a) 𝑃𝑃𝐵𝐵; b) 𝜀𝜀�̅�𝑝; c) 𝑇𝑇𝐶𝐶; and d) 𝐺𝐺𝐶𝐶. 

 

 
 

Fig. 4. Total Sobol’s indices, computed with the traditional approach and with the PCE 
metamodel, for the outputs: a) 𝑃𝑃𝐵𝐵; b) 𝜀𝜀�̅�𝑝; c) 𝑇𝑇𝐶𝐶; and d) 𝐺𝐺𝐶𝐶. 

 
Based on Fig. 3 and Fig. 4, it can be observed that the PCE metamodels are able to accurately 

predict both sensitivity indices. The only significant difference between the indices computed with 
the traditional and PCE metamodel is observed for the output 𝐺𝐺𝐶𝐶, where the maximum absolute 
difference between the sensitivity indices of both methodologies is 0.073. This occurs due to the 
lower accuracy of the metamodel to predict the 𝐺𝐺𝐶𝐶 output, as shown in Fig. 3 (d). Nevertheless, 
even in this case the accuracy of the sensitivity indices computed by the PCE metamodels is 
suitable to quantify and rank the influence of the input parameters. It is noteworthy that, that the 
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computation of the Sobol indices with the traditional approach required 39000 simulations, while 
the computation with the PCE metamodel only required 4000 simulations (3000 for training and 
1000 for testing the metamodel). 

In summary, the PCE metamodel allowed to evaluate the Sobol’s indices with accuracy and 
computational efficiency, requiring about 90% less numerical simulations when compared to the 
traditional approach. 
Summary 
In this work, a polynomial chaos expansion (PCE) metamodel is used to compute sensitivity 
indices, with the goal of reducing the computational cost associated with the traditional approach. 
The sensitivity indices were assessed with both methodologies for 4 outputs/results: the punch 
force (𝑃𝑃𝐵𝐵), the equivalent plastic strain (𝜀𝜀�̅�𝑝), the thickness change (𝑇𝑇𝐶𝐶) and the geometry change 
(𝐺𝐺𝐶𝐶) of the square cup forming process. In this study was assumed uncertainty in 11 input 
parameters, namely, elasticity parameters, anisotropy coefficients, hardening parameters, blank 
thickness, friction coefficient and blank holder force. 

The PCE metamodel allowed to establish mathematical relationships between the square cup 
forming results and the sources of uncertainty. The predictive performance of the PCE metamodels 
was tested, and it was concluded that the metamodels were able to accurately predict the simulation 
outputs. Then, Sobol’s indices were estimated with the trained PCE metamodels and the traditional 
approach based on a quasi-Monte Carlo (q-MC) method. Both methodologies obtained similar 1st 
order and total Sobol’s indices for the 𝑃𝑃𝐵𝐵, the 𝜀𝜀�̅�𝑝 and the 𝑇𝑇𝐶𝐶. Small differences in the Sobol’s 
indices were observed for the 𝐺𝐺𝐶𝐶 output, but without compromising the sensitivity results.  

In summary, the PCE metamodel allowed to reduce the computational cost in 90%, when 
compared to the traditional approach, without compromising the results accurately. In future 
works, other metamodel techniques will be tested to further improve the prediction accuracy, 
particularly, in the case of the geometry change. Furthermore, it is also intended to optimise the 
number of base simulations required to train and test the metamodel to further reduce the 
computational cost. 
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