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Abstract. For optimum operation, modern production systems require a careful adjustment of the 
employed manufacturing processes. Physics-based process simulations can effectively support this 
process optimisation; however, their considerable computation times are often a significant barrier. 
One option to reduce the computational load is surrogate-based optimisation (SBO). Although 
SBO generally helps improve convergence, it can turn out unwieldy when the optimisation task 
varies, e.g. due to frequent component adaptations for customisation. In order to solve such 
variable optimisation tasks, this work studies how recent advances in machine learning (ML) can 
enhance and extend current surrogate capabilities. More specifically, an ML-algorithm interacts 
with generic samples of component geometries in a forming simulation environment and learns to 
optimise a forming process for variable geometries. The considered example of this work is blank 
holder optimisation in textile forming. After training, the algorithm is able to give useful 
recommendations even for new, non-generic geometries. While the prior work considered initial 
recommendations only, this work studies the convergence behaviour upon component-specific 
algorithm refinement (optimisation) at the example of two geometries. The convergence of the 
new pre-trained ML-approach is compared to classical SBO and a genetic algorithm (GA). The 
results show that initial recommendations indeed converge to the process optimum and that the 
speed of convergence outperforms the GA and compares roughly to SBO. It is concluded that – 
once pretrained –the new ML-approach is more efficient on variable optimisation tasks than 
classical SBO. 
Introduction 
Most modern production systems are complex systems and require a careful optimisation during 
production ramp-up. In current practice, this often involves resource-intensive trial-error 
campaigns combined with expert-judgment based on experience from prior parts. However, 
shrinking lot sizes, ever shorter development cycles and increasing product diversity severely 
challenge such empirical approaches and call efficient process optimisation tasks. 

Thus, it is found that recurring optimisation tasks for ever-changing geometries or materials, 
respectively, are a significant economical barrier [1]. This holds all the more when processing 
delicate materials, such as textiles used for continuous-fibre reinforced plastics (CoFRP). They are 
usually processed in elaborate, multi-step processes and most often comprise a forming process of 
a textile. The wide range of adjustable process parameters and the complex, non-linear material 
behaviour require place high demands on a suitable process configuration and pose a challenging 
development task. 
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To reduce the cost of an experimental process development, numerical simulations have gained 
attention over the last decades [2]. They allow for detailed analyses of complex processes and help 
concentrate costly experiments on the most promising variants. Also, their inherently digital nature 
allows a combination with optimisation algorithms. However, they usually involve significant 
computational efforts and especially repetitive simulations, e.g. iterative optimisation, quickly 
renders them impracticable in practice. 

One option to reduce the numerical effort in such cases is surrogate-based optimisation (SBO) 
[3]. Surrogates are numerically efficient, data-driven approximations of expensive simulations 
based on input-output-observations. Once sufficiently trained, optimisation can be done on the 
surrogate in short time. Overall, SBO results in significant optimisation speed-ups. However, 
current SBO-approaches are mostly application-specific and fall short on reusability in new 
scenarios. Even subtle problem variations, e.g. geometry variations in manufacturing, instantly 
invalidate the surrogate and require resampling of data and reconstructing the surrogate. Thus, 
demand for generalised models arose. 

At the same time, developments in Machine Learning (ML) have achieved remarkable results 
in complex tasks and may open up new avenues for advanced surrogates . The overarching concept 
is to sample process observations for a range of generic geometries and analyse it with ML-
techniques [4-6]. Recurring patterns in the data may then guide a process optimisation of a new 
component. Owing to their reconfigurability and ease of evaluation, physics-based numerical 
process simulations are used for data sampling. Prior work has shown that such models can issue 
useful process recommendations for new components [4]. However, although the 
recommendations are useful, they are not strictly optimal but show some deviations to the true 
optimum. Thus, this work studies whether or not the initial ML-recommendations converge to the 
true optimum upon component-specific refinement. 
Optimisation Methodology 
Optimisation Approaches. 
Formally, a forming simulation can be seen as a function 𝜑𝜑:𝑃𝑃

𝐺𝐺
→ 𝑄𝑄 which maps variable process 

parameters 𝑝𝑝 ∈ 𝑃𝑃 to a part quality descriptor 𝑞𝑞 ∈ 𝑄𝑄 for a given component geometry 𝑔𝑔 ∈ 𝐺𝐺. 
Process optimisation then amounts to searching the optimal process parameters 𝑝𝑝∗ = arg min 𝑞𝑞(𝑝𝑝) 
which yield the best quality1. Finding this optimum is a profound task, though, and this work 
compares three different workflows as shown in Fig. 1. 

One approach is to directly couple optimisation algorithms with the simulation 𝜑𝜑, e.g. genetic 
algorithms as Fig. 1a) shows. For a given geometry 𝑔𝑔, they determine the process parameter 
optimum 𝑝𝑝∗ by iterative evaluation, variation and combination of parameter combinations. 
However, 𝜑𝜑 is generally costly to evaluate and thus, iterating 𝑝𝑝∗ until convergence quickly become 
prohibitively computation-intensive. 

In order to increase efficiency, surrogate-based optimisation (SBO) constructs a numerically 
efficient substitute function 𝜇𝜇srg:𝑃𝑃 → 𝑄𝑄, the “surrogate”. The surrogate seeks approximates 𝜑𝜑 
from a set of pre-sampled observations and allows to do the optimisation in short time on 𝜇𝜇srg 
instead of 𝜑𝜑, cf. Fig. 1b) [3]. The obtained candidate solution 𝑝𝑝srg∗  is in turn validated in a 
simulation run and this new observation is fed back to the database. The procedure then repeats 
until convergence. 

Numerous case studies across disciplines have reported substantial optimisation speed-ups by 
SBO, see e.g. [7]. However, current SBO-strategies provide mostly application-specific, one-off 
models and struggle with unforeseen task variations. This impairs reusability in new scenarios: 

 
1 In manufacturing the part quality 𝑞𝑞 is often expressed by the extent of defects like cracks or wrinkles which are 
sought to be minimised, not maximised. 
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Even a subtle problem variation, e.g. a change of material or geometry, instantly invalidates the 
surrogate and requires resampling of data and reconstructing the surrogate [4]. Thus, demand for 
generalised models has been identified early on [8]. 

 

 
Fig. 1. Workflows of a) direct, b) surrogate-based optimisation (SBO) and 

c) Reinforcement Learning on multiple geometries. 
 

As a remedy, prior work of the authors [4] and [9] suggests to give up on classical surrogate 
models 𝜇𝜇srg in favour of a more generalised function 𝜇𝜇:𝐺𝐺 → 𝑃𝑃. While classical surrogate models 
are in most cases used for fix geometries or consider parametric geometries only, 𝜇𝜇 is meant to 
learn the underlying part-process-relations from a whole set of non-parametric generic training 
geometries. After training, it shall be able to give parameter recommendations even for new 
geometries which are not part of the training geometries. A detailed description of the 
implementation is given in the prior publications [4] and [9] and thus, only a brief glimpse is 
provided in this work. 

Reinforcement Learning for process optimisation.  
The overarching idea is that the ML model function interacts with a set of generic geometries 

(geometry catalogue 𝐺𝐺) in a simulation environment. The workflow is visualised in Fig. 2a). 
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Fig. 2. a) Training scheme via Reinforcement Learning and b) image-based design of the ML-

model 𝝁𝝁 [4,9]. 

In each training iteration 𝑖𝑖, a geometry 𝑔𝑔 is drawn from the geometry catalogue. Then the ML-
model 𝜇𝜇 analyses 𝑔𝑔 and issues an estimation of optimal parameters 𝑝𝑝∗|𝑔𝑔. This parameter 
recommendation is then evaluated in a simulation run 𝜑𝜑 to determine the resulting part quality 𝑞𝑞. 
If 𝑝𝑝∗|𝑔𝑔 indeed improves the part quality, then the ML-model is encouraged to give similar 
recommendations for similar geometries in the future. Formally, this means that the gradient ∇𝒑𝒑𝑞𝑞 
is determined and used to adapt 𝜇𝜇‘s parameter recommendations in direction of increasing quality 
𝑞𝑞. The procedure iterates until the forming quality across all geometries in the catalogue seizes to 
improve. 

In the context of material forming, image-based approaches for 𝜇𝜇 – as illustrated in Fig. 2b) – 
have been proposed [4-6]. Compared to conventional geometry parameters, e.g. length, width, 
fillet radii or angles, image-based geometry descriptions have proven robust and versatile when 
applicability to variable geometries is key. In this work and the prior works of the authors, 𝜇𝜇 
consists of two nested functions, 𝜇𝜇1 and 𝜇𝜇2, both of which are image-processing neural networks, 
so-called convolutional neural networks. The functions serve different purposes as Fig. 2b) 
visualises: 𝜇𝜇1 interprets the geometry and issues an estimation where and to what extent material 
strains are likely to occur. More specifically, the shear strain is evaluated as in-plane shear is the 
dominant deformation mechanism in engineering fabrics. Then, 𝜇𝜇2 interprets this strain-estimation 
and devises a parameter recommendation 𝑝𝑝∗. 
Simulation Model and Optimisation Task 
This work picks up on the models from the prior works [4,9] and is based on experimentally 
validated simulation approaches. It considers forming of cuboid geometries with the aid of 
pressure pads, cf. Fig. 3a). The cuboids can be varied in their dimensions 𝑤𝑤1 and 𝑤𝑤2 (width and 
length) as sub-image b) shows. For all geometries, the pads can be positioned freely around the 
perimeter of the geometries in order to control the draw-in of the fabric during forming. 
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Fig. 3. a) Simulation setup for fabric forming with pressure pads; b) sample geometries in the 

geometry catalogue. Images are adapted from the prior work [4]. 
 

The cuboids are deliberately severe and show a strong tendency towards wrinkling. The overall 
quality goal during forming is to obtain a wrinkle-free forming result. As a direct measure of 
wrinkling, the fabric curvature 𝜅𝜅 is evaluated according to [11]. More specifically, 
the 99.5 % percentile 𝜅𝜅qnt of a Weibull fit to the fabric curvature distribution quantifies the quality, 
cf. Fig. 4a). The contour plot in Fig. 4b) shows 𝜅𝜅qnt for a single geometry as a function of the 
position of the pressure pads 𝑝𝑝1,2 along with a top-view-visualisation of the pressure pads. The 
plot has been established by a fine grid-sampling of all possible pad positions for a single 
geometry. Note that these grid-samples are by no means involved in algorithm training but serve 
only for visualisation of 𝜅𝜅qnt (objective function) from an ‘omniscient’ perspective. The yellow 
marker illustrates how a specific pad position relates to the contour plot and vice-versa. Note that 
the plot is normalised so as to facilitate comparability with the following plots. 

 

 
Fig. 4. a) Exemplary forming result with wrinkling, histogram of the fabric curvature plus 

Weibull fit; b) Contour plot of the obtained curvature (quality) depending on the pad positions 
𝒑𝒑𝟏𝟏,𝟐𝟐. Images adapted from prior work [4]. 

 
Clearly, different pad positions significantly alter the obtained curvature and a distinct 

optimum, i.e. minimal curvature, can be observed. All geometries show such an optimum; 
however, its location varies and 𝜇𝜇 shall estimate its position for each geometry in the catalogue.  
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Results and Discussion 
In the prior work [9], 𝜇𝜇 is trained on a set of box-geometries shown in Fig. 3b). The results show 
that it gives useful estimations not just for new box-geometries but also – to a certain degree – for 
‘non-box’ geometries. See [9] for further details on the results. Two of these test geometries shall 
be further analysed in this work. They are shown in Fig. 5 on the left: A rotational symmetric shell 
with conical tips (𝑔𝑔1) and a double-dome geometry (𝑔𝑔2).  

The contour plots in Fig. 5 show the forming quality (curvature) for all pad positions obtained 
by a grid-sampling approach. Note that they are not a subset of the box-geometries but, as they are 
doubly-symmetric and near-convex, they will still show a similar forming behaviour: Both contour 
plots feature a minimum similar to the box-geometry in Fig. 4b). Some qualitative differences can 
be observed, though: For 𝑔𝑔1, the optimum is not a sharp point but a plateau-like region in the 
bottom-left of the plot. In contrast, the optimum for 𝑔𝑔2 is comparably distinct and surrounded by 
two, connected maxima in a funnel-like shape while the majority of the plot is of approximately 
constant, mediocre quality. 

Additionally, the plots feature three types of markers, namely two large and 30 small markers. 
The blue large marker visualises the best quality obtained during grid-sampling which is assumed 
to be the ‘true optimum’ 𝑝𝑝∗. The yellow large marker denotes 𝜇𝜇’s initial process recommendation 
𝑝𝑝ML
∗,0  immediately after training on box-geometries. If both the blue and the yellow marker 

coincided, that would imply that 𝜇𝜇 had made a perfect estimation of the process optimum. 
However, such a perfect estimation is highly unlikely since 𝜇𝜇 makes inference for a new geometry 
on the basis of generic box-geometries. Thus, the two markers are close to each other but still lie 
some distance apart. More specifically, an overestimation of ≈ 18 % (𝑔𝑔1) ≈ 13 % (𝑔𝑔2) relative to 
the parameter range 25 mm ≤ 𝑝𝑝1,2 ≤ 200 mm is observed. 

However, the question arises, whether the yellow marker approaches the blue marker (true 
optimum) upon component-specific continuation of training. That is, having been pretrained on 
generic boxes, 𝜇𝜇 interacts now only with geometry 𝑔𝑔1 or 𝑔𝑔2, respectively. Thereby 𝜇𝜇 can iteratively 
refine on these specific geometries. The evolution of 𝜇𝜇’s recommendation 𝑝𝑝ML

∗,𝑖𝑖 , is visualised by 
the smaller markers whose hue denotes their order of appearance, i.e. refinement iteration 
𝑖𝑖rfn = 1 (black) to 𝑖𝑖rfn = 30 (white). 
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Fig. 5. Contour plots with 𝝁𝝁’s process recommendations during component-specific continuation 

of training for a) geometry 𝒈𝒈𝟏𝟏 (rotational symmetric shell) and b) 𝒈𝒈𝟐𝟐 (double-dome). 
 

However, the question arises, whether the yellow marker approaches the blue marker (true 
optimum) upon component-specific continuation of training. That is, after the training on generic 
box-geometries, 𝜇𝜇 interacts now only with geometry 𝑔𝑔1 or 𝑔𝑔2, respectively. Thereby 𝜇𝜇 is meant to 
iteratively refine its recommendations on these specific geometries. The evolution of 𝜇𝜇’s 
recommendation 𝑝𝑝ML

∗,𝑖𝑖 , is visualised by the smaller markers, while their hue denotes their order of 
appearance, i.e. refinement iteration 𝑖𝑖rfn = 1 (black) to 𝑖𝑖rfn = 30 (white). 

The plots reveal a disparate refinement behaviour: For geometry 𝑔𝑔1 in subplot a), the refined 
markers appear somewhat incoherently scattered around the initial recommendation. At most, a 
light tendency to the top left can be observed. In contrast, for 𝑔𝑔2 (double-dome) in subplot b), the 
markers do accumulate and show a coherent evolution: At first, the markers move to the top left. 
But, since this deteriorates the results, they reverse and gradually move downwards before 
concentrating near the minimum. 

These observations can be explained when examining the objective functions in the contour 
plots: For 𝑔𝑔1 in subplot a), the plateau-characteristic makes it difficult to identify a gradient for an 
improved pad position. Accordingly, the recommendations (markers) appear erratic. In contrast, a 
distinct optimum is observable for 𝑔𝑔2 and – after a few iterations for ‘orientation’ – the markers 
move in direction of improved part quality. For some reason however, they only approach but do 
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not reach the observed optimum (blue marker). This may be due to numerical noise when 
evaluating the forming simulation. 

Ultimately, Fig. 6 illustrates the optimisation progress for both geometries by means of the 
objective function. The diagrams support the above line of thought: Sub-image a) shows that the 
forming quality 𝜅𝜅rel stays practically constant for 𝑔𝑔1 through all refinement iterations, while it 
improves (declines) for 𝑔𝑔2 after correction of an initial peak. Overall, the results indicate that– like 
a regular surrogate – 𝜇𝜇 can indeed refine its initial recommendations with new evidence. 

 

 
Fig. 6. Evolution of the optimisation objective 𝜿𝜿𝒓𝒓𝒓𝒓𝒓𝒓 during component-specific refinement of 𝝁𝝁 on 

𝒈𝒈𝟏𝟏 and 𝒈𝒈𝟐𝟐. 
Summary 
Having seen that the RL-based optimisation method indeed shows optimisation behaviour, the 
three optimisation approaches from Fig. 1 – direct optimisation with a genetic algorithm (GA), 
SBO and RL – can be compared to each other. Each method is applied to the geometries 𝑔𝑔1 and 
𝑔𝑔2 for inspection of the optimisation behaviour. The GA stems from the publicly available 
optimisation toolbox ‘Dakota’ [12] and the SBO reference method is described in detail in [13]. 

Note that the optimisation approaches employ different iterative schemes: The GA utilises a 
generation-based principle with each generation comprising 𝑛𝑛idv = 20 individuals. It is set to 
terminate after 𝑛𝑛g = 15 generations, i.e. after a total of 𝑛𝑛g ⋅ 𝑛𝑛idv = 15 ⋅ 20 = 300 simulations. 
This limit prevents excessive computation times and was determined empirically in a prior analysis 
on a fast – but much simpler – substitute model, cf. [4]. The limit is set such that at least one 
individual becomes (near-)optimal; yet it does not necessarily imply full convergence of the whole 
population around the optimum. For prevention of a potential quality-loss, the best found solution 
from the previous generation is (unaltered) carried over to the next generation (so-called ‘elitist’ 
selection). Both SBO and RL employ 𝑛𝑛𝑖𝑖 = 30 refinement iterations (simulations). However, SBO 
requires a component-specific sampling – in this work Latin Hypercube Sampling – which 
accounts for additional 𝑛𝑛𝑠𝑠 = 20 a-priori simulations before optimisation start. Also note, that RL 
needs no specific sampling due to its pretraining on box-geometries. Thus, it can directly start 
refining its recommendations for optimisation. 

Geometry g1.  
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For a direct comparison, Fig. 7 plots the progress of each optimiser on the objective 𝜅𝜅rel in one 
diagram along with a detail view for closer inspection (grey shade). Besides the sheer sequence of 
𝜅𝜅𝑟𝑟𝑟𝑟𝑟𝑟 (thin dashed line), the plots also show their lower envelope (bold solid line). Essentially, it 
gives for each iteration the ‘so-far-best’ solution and visualises, how fast each optimiser reduces 
the objective function. Overall, all graphs show a successful optimisation behaviour as they all 
approach the minimum (𝜅𝜅rel = 0 %). 

However, although all approaches improve the solution over the iterations, the gain during 
additional optimisation iterations is limited as the first solutions are already near-optimal  
(𝜅𝜅rel ≈ 1. . .5 %). Thus, they offer little room for improvement with further iterations. This 
phenomenon can be explained by inspection of the contour plot, cf. Fig.5a): Since the optimum is 
not a sharp point but a comparably large plateau, the optimisers find it right at the beginning and 
thus have no room for improvement during iterations. 

 

 
Fig. 7.  Juxtaposition of 𝜿𝜿𝒓𝒓𝒓𝒓𝒓𝒓 during optimisation on 𝒈𝒈𝟏𝟏 for the GA, SBO and the RL-approach. 
The plots of GA and SBO are offset to account for the simulations until a first iteration occurs. 
Note that 𝜿𝜿𝒓𝒓𝒓𝒓𝒓𝒓 is near-optimal directly from the beginning (𝜿𝜿𝒓𝒓𝒓𝒓𝒓𝒓 ≈ 𝟏𝟏. . .𝟓𝟓 %). In accord, the plot 

is magnified with a y-axis focus on the lower 10%. 
 

Despite the limited gain, the GA finds the overall-best solution (𝜅𝜅rel = 0.2 %), while both RL 
and SBO (𝜅𝜅rel = 0.82 %) remain slightly inferior (𝜅𝜅rel = 0.78 %). Note however, that RL and 
SBO require far fewer iterations to reach their final value, i.e. they converge faster. Also note that 
all algorithms involve elements of randomness. Thus, re-running them will probably lead to 
slightly different graphs and optimisation results. 

Geometry g2. 
In a similar manner, Fig. 8 shows graphs for each optimisation approach on 𝑔𝑔2 (double-dome) 

The overall behaviour of the algorithms stays the same as before: A successful optimisation can 
be observed. However, this time a notable effect of additional iterations is observed. Due to the 
majority of mediocre process responses (plateaus), all methods start at  
𝜅𝜅rel ≈ 40. . .50 % in their first iteration, but then the progresses differ.  
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Fig. 8. Juxtaposition of 𝜿𝜿𝒓𝒓𝒓𝒓𝒓𝒓 during optimisation on 𝒈𝒈𝟐𝟐 (double-dome) for the GA, SBO and the 
RL-approach. The plots of GA and SBO are offset to account for the number of simulations until 

a first iteration. 
 

Overall, the plot resembles the previous: The graphs decline in a monotonous manner to the 
minimum (𝜅𝜅rel = 0%) and RL and SBO outperform the GA. However, this time all graphs show 
a substantial improvement of the objective function 𝜅𝜅rel during optimisation. All optimisers find 
a solution within a 5 %-range around the optimum, while SBO finds the overall best-solution with 
𝜅𝜅rel ≈ 2 %. The GA reaches the 5 %-range after 160 simulations and RL after 18 iterations. 

Speed of convergence. Ultimately, the speed of convergence shall be briefly assessed. To this 
end, the convergence metric  

𝐶𝐶 = ∫ 𝜅𝜅𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖) d𝑖𝑖
𝑖𝑖max
𝑖𝑖=0 = ∑ 𝜅𝜅𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖) ∆𝑖𝑖 =𝑖𝑖max

𝑖𝑖=0 ∑ 𝜅𝜅𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖)
𝑖𝑖max
𝑖𝑖=0                (1) 

 
is used. Essentially, it is the area under the (solid) graphs until each optimiser has reached its final 
value in iteration 𝑖𝑖max. Due to the integer-abscissa, 𝑑𝑑𝑖𝑖 = ∆𝑖𝑖 = 1 holds which simplifies the integral 
to a sum. Overall, a smaller value of 𝐶𝐶 implies faster convergence. If an approach finds a good 
solution early on, the following summands and thus 𝐶𝐶 becomes smaller. This reflects the desired 
behaviour during optimisation of expensive functions, i.e. rapid minimisation with only few 
function evaluations. Table 1 below summarises the convergence metrics 𝐶𝐶 and numbers of 
simulations 𝑖𝑖max each optimisation approach required until its final value. 
 

Table 1: Convergence comparison of GA, SBO and RL according to the convergence metric 𝑪𝑪 
and the required number of iterations 𝒊𝒊𝒎𝒎𝒎𝒎𝒎𝒎. 

 GA SBO RL 
Geometry 𝐶𝐶 𝑖𝑖max 𝐶𝐶 𝑖𝑖max 𝐶𝐶 𝑖𝑖max 

 𝑔𝑔1 4.39 180 0.79 42 0.31 4 
 𝑔𝑔2 37.13 160 13.50 32 4.02 19 

sum - 340 - 74 - 23 
 
For both geometries, 𝑔𝑔1 and 𝑔𝑔2, SBO and the new RL-based method outperforms the GA by a 

large margin: While the GA requires 160 or 180 simulations, respectively, SBO and RL require 
less than 50 simulations to reach an approximately equal forming result. Equally large differences 
can be observed for the 𝐶𝐶. When comparing SBO and RL directly, RL appears more efficient than 
SBO. This is mainly because the RL-based approach does not require a component-specific 
sampling due to its pretraining on generic (box-)geometries. It must be noted however, that the 
computational effort for this pretraining may considerable. 
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The advantage of the pretrained RL-model becomes even more evident when optimising 
multiple geometries: Suppose, both geometries 𝑔𝑔1 and 𝑔𝑔2 need to be manufactured and their 
processes must be optimised. Optimising both geometries with SBO requires in total 74 
simulations of which 2 ⋅ 𝑛𝑛s = 40 simulations are required just for sampling. In contrast, the RL-
model can do without component-specific sampling due to its pretraining on boxes and takes only 
23 simulations in total. Although the exact numbers will certainly vary in different applications, 
the non-necessity of the a-priori sampling substantially cuts the computational effort. 
Summary 
This work studies the convergence behaviour of a previously proposed RL-based approach for 
process optimisation of variable geometries. The approach centres around an ML-model which 
interacts iteratively with a catalogue of generic geometries in a simulation environment. It thereby 
learns which geometry requires which optimal process configuration. The approach is studied at 
an example from prior work, namely optimisation of pressure pad positions during textile forming. 
Prior work has shown that – after the (pre-)training on generic geometries – the RL-approach 
indeed gives useful, near-optimal process recommendations [4,9]. This work picks up on these 
results and investigates, whether the recommendations converge to the true optimum upon 
component-specific refinement and if so, how fast. 

The results are twofold: First, the results on two demonstrator geometries hint that the proposed 
RL-model indeed converges to the true process optimum. Second, a comparison to two 
conventional optimisation approaches – a genetic algorithm (GA) and a ‘classical’ surrogate-based 
approach (SBO) – shows that RL and SBO outperform the GA and show a similar convergence 
during refinement iterations. However, SBO needs a component-specific a-priori sampling while 
the RL-based method is pre-trained on generic geometries and can directly start refining its 
recommendations. Thus – once trained – it speeds up the optimisation process similar to a classical 
surrogate but beneficially cuts the component-specific sampling effort. However, this comes at the 
cost of substantial numerical efforts for algorithm pretraining. 

The results of this work and the prior work show that it is indeed possible to extract usable part-
process-relations from generic samples and use them during process optimisation for new 
components. While this work outlines their principal potential, the developed techniques yet need 
to be advanced to more complex and application-centred use-cases from industrial practice. 
Regarding textile-forming, this means the integration of more complex process scenarios, e.g. 
more complex geometries, additional process parameters and variable material properties. In the 
wider sense, the methods can also be tested on other processes inside and outside material forming. 
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