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Abstract. The training of an Artificial Neural Network (ANN) for implicit constitutive modelling 
mostly relies on labelled data pairs, however, some variables cannot be physically measured in 
real experiments. As such, the training should preferably be carried out indirectly, making use of 
experimentally measurable variables. The unconstrained training of an ANN’s parameters often 
leads to spurious responses that do not comply with the physics of the problem. Applying 
constraints during training ensures not only the physical meaning of the ANN predictions but also 
potentially increases the convergence to a global minimum, while improving the model’s 
performance. An ANN material model is trained using a novel indirect approach, where the local 
and global equilibrium conditions are ensured employing the Virtual Fields Method (VFM). An 
example of physical constraint is analyzed and applied during the training process. 
Introduction 
ANNs are powerful function approximators that can be used to implicitly learn constitutive 
relations directly from data, without having to postulate a mathematical formulation [1–3]. Several 
successful applications of ANNs for implicit modelling of material behavior have been reported 
in the literature (e.g., [4–6] among others). Most of the approaches rely on training the ANNs with 
paired data, usually stress-strain, from numerically generated datasets. Nevertheless, in a real 
experiment, certain variables, such as stresses, are not measurable and, therefore, the training 
should preferably be carried out indirectly making use of experimentally measurable variables 
only. 

Although a standard ANN could be able to learn the constitutive behavior of a material, given 
enough data, it usually works as a black-box model in which its structure is not easily interpretable 
and there is no guarantee that its predictions are usable, as they can violate fundamental laws of 
mechanics and thermodynamics [3–5]. Thus, it is necessary to enforce physics-based constraints 
when using ANNs for implicit constitutive modelling. The incorporation of this knowledge into 
the network allows it (i) to learn the structure of the underlying constitutive relations, (ii) reduce 
its sensitivity to noise and (iii) increase its performance regarding inputs outside the training 
domain [7]. Physics-based constraints act as a regularization agent for ANNs, reducing the space 
of admissible solutions and allowing the network to learn with smaller datasets, as it already does 
not have to learn those relationships from data [6,7]. These constraints can be enforced using 
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custom ANN architectures [3], model constraints (e.g., weight constraints) [7] or 
penalty/regularization terms [5,8]. Some examples of constraints are shown in Table 1. 

In the present work two single layer perceptron models are used to model the linear elastic 
response of a virtual material. A novel indirect training methodology employing the sensitivity-
based Virtual Field Method (VFM) [17] is used to train both models and study the application of 
constraints during training. Here, the applied constraint was the positive definiteness of the tangent 
stiffness, which in the absence of plastic deformation, degenerates into the elastic stiffness matrix 
D. 

Table 1. Examples of material model constraints to enforce during ANN training. 

 Formulation Description 

1st law of thermodynamics γloc =  𝛔𝛔 : 𝛜𝛜 ̇ +  θη ̇ −  �̇�𝐄 

The work done by stress must 
either be stored as recoverable 
internal energy in the solid or 
dissipated as heat [8,9] 

2nd law of thermodynamics γloc  ≥  0 

For a sample of material 
subjected to a cycle of 
deformation, starting and 
ending with identical strain and 
internal energy, the total work 
must be positive or zero [8,9] 

Drucker’s postulate Δσ𝑖𝑖𝑖𝑖Δε𝑖𝑖𝑖𝑖 ≥  0 
The work done by the tractions 
through the displacements is 
positive or zero [12] 

Symmetric positive 
definiteness of tangent 

stiffness 

∂𝛔𝛔 
∂𝛆𝛆

 =  𝐇𝐇 ≻ 0 

The tangent stiffness matrix is 
symmetric positive definite, 
ensuring that the strain energy 
is weakly convex [13] 

Time consistency lim
Δ𝛆𝛆→0

Δ𝛔𝛔 =  0 
A consistent material law maps 
a state of zero strain onto a state 
of zero stress [13] 

 
The Drucker’s stability criterion bears no physical meaning. Not all materials are stable in this 
sense, however, issues will arise for materials that do not respect it, when used to solve boundary 
problems [9,17]. 
 
Mechanical Test and Dataset Creation 
A heterogeneous test was used to generate synthetic data to train the ANN models. The geometry 
consists of 3 × 3 mm2 plate with thickness t = 0.1 mm. The initial mesh, geometry and boundary 
conditions are depicted in Fig. 1. Symmetry boundary conditions are applied to the boundaries at 
x = 0 and y = 0 and a surface traction is applied to the boundary at x = 3 mm. The traction follows 
a non-uniform distribution with a single component along the x-direction, varying linearly in the 
𝑦𝑦-direction, according to: 𝑓𝑓𝑥𝑥(𝑦𝑦) = 𝑚𝑚𝑦𝑦 + 𝑏𝑏, where 𝑚𝑚 and 𝑏𝑏, respectively, control the slope and 
intercept of the distribution. 
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Fig. 1. Heterogeneous test: initial geometry, mesh and boundary conditions, adapted from [14]. 

 
The numerical simulations were conducted using the commercial finite element code Abaqus. 

The model was built with CPS4R elements (bilinear reduced integration plane stress). The elastic 
parameters were defined as 𝐸𝐸 = 210 GPa and ν = 0.3. To generate a training dataset, various 
simulations were performed with the time period set to 1 and a fixed time increment Δt = 0.001. 
For each time step, the strain tensor at the centroid was extracted for all the elements and the 
resultant force computed from the equilibrium of the internal forces, such that: 

𝐹𝐹𝐹𝐹 = ∑ σ𝑖𝑖𝐴𝐴𝑖𝑖𝑡𝑡𝑛𝑛
𝑖𝑖=1                     (1) 

where F is the global force, l the length of the solid, A is the element’s area and t is the thickness. 
The training and validation datasets were generated for different load distribution parameters, 
depicted in Table 2. Prior to training and for each mechanical test, the dataset was organized into 
batches of 9 elements per time increment and shuffled before being split into training (67%) and 
test data (33%). The input features were scaled in order to have zero mean and unit variance. 

Table 2. Loading parameters for the generation of the training and validation datasets. 

Training set  𝑚𝑚 = {60,80,100,120} [𝑁𝑁
/𝑚𝑚𝑚𝑚]  𝑏𝑏 = {60,80,100} [𝑁𝑁] 

Validation set 

m b 
50 50 
70 90 
90 65 
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Neural Network Model 
A single layer perceptron with linear activation was chosen to predict the elastic response. The 
inputs were the components of the strain tensor at a given time t and the outputs were the 
components of the corresponding stress tensor, as depicted in Fig. 2. 

Fig. 2. Single layer perceptron with linear activation. 
 

The model outputs the stress directly according to the following relationship during the forward 
pass: 

 

𝛔𝛔 = W𝛜𝛜+b  ⟺ �
σxx
σyy
τxy

� = �
w11 w12 w13
w21 w22 w23
w31 w32 w33

� �
ϵxx
ϵyy
ϵxy

� + �
b11
b21
b31

� (1) 

where wij are the layer weights and bij the biases. An analogy can be established between the terms 
of the weight matrix W and the elasticity matrix D in the Hooke’s law, for an isotropic material 
under plane stress: 

 𝛔𝛔 = 𝐃𝐃𝛜𝛜 ⟺ �
σ𝑥𝑥𝑥𝑥
σ𝑦𝑦𝑦𝑦
τ𝑥𝑥𝑦𝑦

� =
𝐸𝐸

(1 + ν)(1 − 2ν)
�

1-ν ν 0
ν 1-ν 0

0 0
1-2ν

2

� �
ϵ𝑥𝑥𝑥𝑥
ϵ𝑦𝑦𝑦𝑦
ϵ𝑥𝑥𝑦𝑦

� (2) 

with D defined in terms of the elastic constants E, the Young’s modulus and ν, the Poisson’s ratio. 
For the material chosen for this work, the elasticity matrix D is the following: 

 𝐃𝐃 = � 
230769.231 69230.769 0
69230.769 230769.231 0

0 0 80769.231
� (3) 

The architecture presented above was used to train two models in order to learn the elastic response 
of the material. One of the models was trained following an unconstrained optimization approach, 
while the other model was trained using a constrained optimization, in order to study how adding 
constraints would influence the resulting stress predictions. 

 
Indirect Training for Linear Model 
Implicit constitutive modelling using ANNs relies on paired data, usually strain and stress tensors, 
in order to learn the material behavior. However, variables such as stress cannot be obtained from 
experiments [15]. Therefore, the training must be carried out indirectly, using only measurable 
data. The VFM, first introduced by Grédiac [16], is a state-of-the-art method employed in the 
identification of constitutive parameters, known by its computational efficiency and does not resort 
to FEM for any forward calculations [17]. The key elements behind the VFM are the Principle of 
Virtual Work (PVW) and the choice of virtual fields. According to the PVW, the internal virtual 
work must be equal to the external virtual work performed by the external forces and is written by 
[18]: 
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 - �𝛔𝛔
V

:𝛆𝛆* dV+ � T
∂V

⋅u* dS=0 (4) 

where 𝛆𝛆∗ is the virtual strain, 𝐮𝐮∗ is the virtual displacement, V is the volume of the solid and T is 
the traction vector. The virtual entities work can be defined independently of the measured 
displacements/strains. Any number of virtual fields can be used; however, the following conditions 
should be honored [5,6]: the functions defining the virtual fields should be piece-wise 
differentiable and kinematically admissible, in order satisfy the displacement boundary conditions. 
The virtual fields can be manually defined, though the choice is tied to the user’s own experience 
and intuition. Moreover, manually defined virtual fields do not show a temporal evolution [17]. 
Nonetheless, systematic procedures to automatically define these virtual entities exist, namely: the 
stiffness-based and the sensitivity-based virtual fields [4,7]. 

 
In the present work, sensitivity-based virtual fields were employed to indirectly train a single-

layer perceptron for implicit constitutive modelling, following the workflow presented in Fig. 3. 
The key concept of the sensitivity-based virtual fields is to apply a perturbation to each of the 

model’s parameters in order to obtain a stress sensitivity and its temporal evolution [17]. The stress 
field is the only quantity that depends directly on the constitutive parameters in the VFM, so the 
stress sensitivity maps highlight areas that strongly depend on a given parameter [20]. In the 
context of this work, the single-layer perceptron from Fig. 2 is taken as a representation of the 
constitutive model. The spatial sensitivity of stress to each model parameter is computed as: 

 δ𝛔𝛔(i)(𝛜𝛜, W, t) = 𝛔𝛔(𝛜𝛜, W, t) - 𝛔𝛔(𝛜𝛜, W+δwi, t) , δwi = -0.1wi (5) 

with i being the i-th term of the perceptron’s weight matrix W and t the time step. The virtual 
displacements 𝐮𝐮∗ are found starting from the following system of equations applied to a virtual 
mesh: 

 δ𝛔𝛔(𝑖𝑖) =  𝐁𝐁𝐮𝐮∗(𝑖𝑖)  (6) 

where B is the global strain-displacement matrix, used to map the virtual displacements at the 
nodes to every virtual strain. If the displacement is prescribed at the boundaries, the traction is 
unknown and, as such, the displacements are set to zero. If, on the other hand, the traction 
distribution is unknown and only the resultant force is known, a constant virtual displacement is 
set at the boundaries. By applying these constraints, a modified global strain-displacement matrix 
𝐁𝐁 is obtained and the virtual displacements 𝐮𝐮∗ can finally be computed as follows: 

 u*(i) = pinv(B) δ𝛔𝛔(i) (7) 

with pinv(𝐁𝐁) being the pseudo-inverse of the modified strain-displacement matrix. The virtual 
strains 𝛆𝛆∗are then computed as: 

 𝛆𝛆∗(𝑖𝑖) =  𝐁𝐁𝐮𝐮∗(𝑖𝑖)  (8) 

The training process is carried out, with the virtual fields 𝐮𝐮∗(𝑖𝑖) and 𝛆𝛆∗(𝑖𝑖) being updated multiple 
times in order to evaluate the loss resulting from the application of the PVW and update the weight 
matrix W accordingly. The loss to be minimized is the following: 

 ℒ(𝐖𝐖, 𝐛𝐛, 𝛜𝛜) =  �

⎣
⎢
⎢
⎡ 1
(α(𝑖𝑖))2 � �� 𝛔𝛔𝑖𝑖(𝐖𝐖, 𝐛𝐛, 𝛜𝛜, 𝑡𝑡) ∙ 𝛆𝛆∗𝑖𝑖(𝑖𝑖)(𝑡𝑡)

𝑛𝑛pts

𝑖𝑖=1

∙ 𝑆𝑆𝑖𝑖 − Wext
∗ (𝑡𝑡)�

2
𝑛𝑛t

𝑡𝑡=1 ⎦
⎥
⎥
⎤𝑛𝑛VFs

𝑖𝑖=1

 (9) 
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with Sj being the surface area of the j-th measurement point and α(i) the scaling factor of the i-th 
virtual field, employed to guarantee similar magnitudes between different virtual fields. In the 
present work, the scaling factor was defined based on the mean of the 30% highest internal virtual 
work values. 
 

 
Fig. 3. Coupled ANN-VFM method for implicit constitutive modelling 

 

Unconstrained Training Analysis 
The Adam algorithm was used to optimize the network weights, with an initial learning rate set to 
0.1, scheduled to be reduced using a multiplier of 0.2 if no improvement in the training loss was 
registered after 3 epochs. For the unconstrained training model, the network was set to train during 
a maximum of 10000 epochs. However, an early-stopping criterion was triggered when no further 
improvement was observed in the test loss, after 2886 epochs. The learning curves are plotted in 
Fig. 4, showing a sharp decline during training with a low value in the order of 10-3 achieved at 
the end and almost no gap being observed between the train and test curves, indicating the model 
did not overfit the data. 

 

 
Fig. 4. Learning curves for the unconstrained training model. 



Material Forming - ESAFORM 2023  Materials Research Forum LLC 
Materials Research Proceedings 28 (2023) 1143-1154  https://doi.org/10.21741/9781644902479-125 

 

 
1149 

During training, the layer weights should evolve in such a manner that, at the end of the process, 
the unscaled matrix W approximates D as much as possible, with the bias vector b being equal to 
or almost zero. Due to the scaling of the inputs, the parameters hold no significance, so the inverse 
scaling is needed here to compare both entities. An overview of both scaled and unscaled model 
parameters obtained after training is shown in Table 3. 

 
Table 3. Scaled and unscaled model parameters for the unconstrained model after training. 

 Layer weights W Biases b 

Scaled �
76.6645 0.01328 0.0159
23.1111 27.4231 0.0667
0.6532 0.3366 5.1392

� {111 0.0997 5.80}T 

Unscaled �
209891.4619 101.9638 234.9259
63273.3868 210502.5075 981.5443
1788.5317 2584.3104 75627.5458

� {0.0305 -0.0369 -0.286}T 

Rel. error [%] �
9.047 99.853 N/A
8.605 8.782 N/A
N/A N/A 6.366

� N/A 

 
Examining the unscaled parameters, one can observe that although the single layer perceptron 

was able to naturally learn nonnegative terms, it was not able to replicate the symmetry of the 
elasticity matrix, thus failing to guarantee the isotropy of the material. Furthermore, there are 
significant errors between the unscaled parameters and the terms of the elasticity matrix D. 
Nevertheless, the indices of the most dominant terms (w11, w22, w33) correlate well with those from 
D. The unscaled bias vector holds very small terms in comparison, however not close to zero. 
From here, we conclude that the model is not able to fully predict the linear elastic response. This 
is confirmed by observing the plots comparing the real and predicted elastic curves corresponding 
to two example elements, shown on Fig. 5. The differences stated above, caused the single layer 
perceptron predictions to achieve correlations ranging from 0.85 to 0.999 and mean absolute errors 
(MAE) from 0.266 to 5.173. 
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Fig. 5. Validation results for the unconstrained training model for elements 1 and 9. 

 
Constrained Training Analysis 

For the constrained training model, the same training parameters were used, with the only 
difference being that the following set of constraints were applied to the entries of the parameter 
matrix W: 

 𝑤𝑤𝑖𝑖𝑖𝑖 >  0 ∧ 𝑤𝑤13 =  𝑤𝑤31 =  0 ∧ 𝑤𝑤23 =  𝑤𝑤32 =  0 (10) 

meaning all the terms of W are forced to be nonnegative and some terms set to be zero, matching 
the indices of the terms with zero values in D. The training progressed with the early-stopping 
criterion being triggered when no further improvement was observed in the test loss, after 5381 
epochs. The resulting learning curves are plotted in Fig. 6, showing a sharp decline during training 
with a lower value of loss being achieved at the end (order of 10-9) when compared to the 
unconstrained model. Similarly, almost no gap is observed between the train and test curves, 
indicating the model did not overfit the data. 



Material Forming - ESAFORM 2023  Materials Research Forum LLC 
Materials Research Proceedings 28 (2023) 1143-1154  https://doi.org/10.21741/9781644902479-125 

 

 
1151 

 
Fig. 6. Learning curves for the constrained training model. 

 
An overview of both scaled and unscaled model parameters obtained after training is shown in 

Table 4. Examining the unscaled parameters, one can observe that enforcing the constraints 
defined in (10 was enough for the single layer perceptron to naturally replicate the symmetry of 
the elasticity matrix, thus guaranteeing the isotropy of the material. Although no constraints were 
applied to the biases, the unscaled bias vector holds values very close to zero, as it was expected. 
The model perfectly predicts the elastic response, as it is confirmed by the plots comparing the 
real and predicted elastic curves corresponding to two example elements, shown on Fig. 7. There 
are some differences between the unscaled parameters and the terms of the elasticity matrix D, 
however these are not significantly high to cause de model to output badly predicted curves. The 
constraints allowed the model to achieve lower mean absolute errors and the highest possible 
correlations r2. 

Table 4. Scaled and unscaled model parameters for the constrained model after training. 

 Layer weights W Biases b 

Scaled �
78.4168 8.2999 0
23.5103 27.8005 0

0 0 4.9949
� {104.3700 0 5.4179}𝑇𝑇 

Unscaled �
230643.294 68815.410 0
69149.634 230497.092 0

0 0 80669.215
� {−0.0043 −0.0001 −0.0007}𝑇𝑇 

Rel. 
error 
[%] 

�
0.054 0.600 N/A
0.117 0.118 N/A
N/A N/A 0.124

� N/A 
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Fig. 7. Validation results for the constrained training model for elements 1 and 9. 
 

Summary 
A single layer perceptron model was trained without stress labels employing a new indirect 
training methodology based on the Virtual Fields Method, which makes use of the Principle of 
Virtual Work and sensitivity-based virtual fields to guarantee the equilibrium between the external 
and virtual work. The sensitivity-based virtual fields are a more robust approach than the manually 
defined virtual fields, providing a systematic way of generating virtual fields that are not static and 
do not dependent on the user’s intuition. 

Two different perceptron models with the same architecture were trained in order to learn the 
linear elastic response of a virtual material and to study the influence of the application of 
constraints during training. Considering a single layer perceptron with 3 inputs and 3 outputs, an 
analogy could be established between the mathematical description of the forward pass and the 
Hooke’s law under plane stress, with the perceptron’s weight matrix W resembling the elasticity 
matrix D. There are several possible ways to constrain the space of admissible solutions of a neural 
network model. In the present work, by adapting the perceptron’s model to the real material model, 
its parameters gain a real meaning, thus making it easier to control their evolution during training 
and ensure the predictions are physically admissible. As such, the constraints were applied directly 
to the perceptron’s parameters in order to guarantee nonnegative terms in W and force some of its 
terms to be zero, matching those in the elasticity matrix D. It was shown that by applying these 
constraints, the single layer perceptron naturally learned the symmetry of the elasticity matrix D, 
respecting the isotropy of the material, and replicated its terms without significant errors, being 
able to predict a linear elastic response that matches the real one. 
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