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Abstract. Friction Stir Welding is a solid-state bonding process that during last years has caught 
the researcher's attention for the mechanical characteristics of the welded joints that are quite 
similar to the properties of the base material. The Friction Stir Welding is affected by several 
process parameters leading to intrinsic variability in the process. The present paper would 
introduce a new approach for predicting the surface hardness in different areas of the welded parts. 
Specifically, this method is based on the hypothesis that multiple Artificial Neural Networks, 
characterized by the same architecture but different weights, can be used for forecasting both the 
punctual value of the local hardness and its confidence interval, resulting in taking into account 
the intrinsic variability of the process. 
Introduction 
Friction Stir Welding (FSW) is one of the most significant technological developments in metal 
joining of the last thirty years and it is also considered a sustainable technology thanks to its energy 
efficiency. Indeed, the energy involved is on average 30% - 40% lower than conventional welds. 
In addition, the emission of greenhouse gases in FSW is about 30% lower than in traditional welds. 

Friction Stir Welding is a welding technology patented by The Welding Institute (TWI) in 1991 
[1]. This solid state mechanical joining technique is used to make joints between similar or 
dissimilar materials that are difficult to be welded with conventional fusion techniques, such as 
sintered materials, magnesium, copper, Inconel, titanium, metal matrix composites and 
thermoplastics. In particular, it is used for high-strength aluminum alloys, which are difficult to 
join using traditional techniques due to their typical microstructural alteration during aging 
hardening. 

From a structural point of view, the FSW introduces welded joints without overlapping edges 
and allows the elimination of connecting parts, such as rivets, with a consequent reduction in the 
weight and costs of the structures. This process, still relatively young, has produced great interest 
in the industrial world so as to achieve enormous development, especially in naval applications, 
but also in the aerospace, railway and automotive industries. The difficulty of the traditional 
welding processes is linked to the problems developed due to the high temperatures during 
processing. Conversely, in Friction Stir Welding, which is a friction process by plastic 
deformation, fusion temperature is never reached during processing, therefore, the formation of 
the problems that occur in conventional welds is avoided. 

In general, welds made using FSW have a different microstructure with respect to the joints 
welded with fusion processes because the maximum temperature reached in the heat-affected zone 
is significantly lower than the melting temperature [2]. By basing the microstructural 
characterization of the joints on the size of the grains and precipitates, it is possible to divide the 
structure of the FSW joint into four characteristic zones: the nugget, the thermo-mechanically 
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affected zone, the heat affected zone and the base material. The nugget is the area of completely 
recrystallized material close to the welding line; near to the nugget, the thermo-mechanically 
affected zone (TMAZ) is detectable. In the TMAZ the material undergoes both plastic deformation 
and heating, whilst only alterations of the microstructure and mechanical properties due to the 
welding thermal cycle are present in the heat affected zone (HAZ) [3]. 

For these FSWed joints characteristics, it is evident that the process parameters greatly 
influence the flow of the plastically deformed material [4]. In particular, there is a strong 
relationship between the microstructure and the quality of the joints is mainly due to the closed 
connection between the mechanical properties of the FSWed joints and the microstructural 
variations of the above-mentioned different zones of the welds. Therefore, particular attention 
must be paid in the choice of parameters to ensure adequate processing conditions, in order to 
avoid the formation of potential defects or weakness points in the identified welding areas [2]. 

Due to the large number of variables that must be considered simultaneously, it is not easy to 
optimize and predict with a good level of accuracy the process performance and the weld quality 
as a function of both the process conditions and the weld zones considered. For this reason, 
optimizing process performance by considering each process parameter individually is not an 
applicable approach. To overcome this problem, various artificial intelligence techniques have 
recently been used, among which the Artificial Neural Network stands out [5,6]. 

An Artificial Neural Network (ANN) is a mathematical model capable of reproducing the 
reasoning mode of the human brain, simulating its processing capabilities through the connection 
of neurons, which are the elementary computational elements of any neural network. The ANN, 
once it has been adequately trained, is able to solve even non-linear problems easily and quickly. 
To do this, the ANN is composed by an oriented network formed by different layers: the input 
layer, which collects the external data, the hidden layers, which process the information through 
the activation functions and the weights of each connection, and the outputs layer. 

The training of the neural network is based on the use of a dataset thanks to which the network 
is able to determine the weights of the interconnections and of the activation function. These 
weights define the reliability of the prediction and can vary as a function of trainings; in fact, 
repeating the training defines different weights configurations which generate different results in 
the prediction. Consequently, it is evident that if the same weights are always considered, the ANN 
produces a constant predictive response with respect to a specific set of inputs. However, this 
aspect is a distorted version of reality. Indeed, it is known that every process is characterized by 
an intrinsic variability caused by external conditions that can influence systems in different and, 
often unpredictable, ways. The possibility of considering this uncertainty in the analysis and 
prediction of complex systems is a topic of considerable importance [7]. For all these reasons, the 
main objective of this work is to develop a model capable of predicting not only the punctual 
mechanical characteristics reached in the different areas of the weld starting from the welding 
parameters, but also of being able to evaluate the intrinsic variability of the process. 

The proposed approach aims at forecasting the welding properties considering the process' 
natural variability by means of a group of Artificial Neural Network (ANN) having the same 
architecture, but different weights. The hypothesis of this work is that predicting the output using 
this approach allows to define an upper and a lower limit in which the proper results are placed. 
This idea was applied to the FSW process for the prediction of the hardness value reached by an 
aluminum alloy (AA 2024-T3) as a function of the main welding parameters (considered as input 
nodes of the ANN). 
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Methodology 
Experimental tests. 
AA2024-T3 sheets were friction stir welded perpendicularly to the rolling direction. The FSW 
process was performed using a CNC machine tool with a tool characterized by a smooth plane 
shoulder (16-mm diameter) and a frustum of cone pin shape (maximum and minimum diameters 
equal to 6 and 4 mm, height equal to 3.9 mm). The tool was realized from a drawn bar of carbon 
steel C40 without any heat treatment. Table 1 reports the welding parameters considered for the 
experimental campaign. The difference in the feed rate combined to 1200 rpm and 1500 rpm is 
linked to the presence of macro and micro defects in the joints welded with 1500 rpm-40 mm/min 
and 1500 rpm-100 mm/min. These defects led the authors to eliminate these combinations of 
parameters from further evaluation, considering them not suitable for the material considered.  

Table 1. Parameters set-up for experimental tests. 

Rotational speed (rpm) Feed rate (mm/min) 
1200 40 
1200 70 
1200 100 
1500 70 

 
All the other process parameters, such as the clamping system for the sheets, the tool inclination 

(fixed at 3°), and the tool penetration depth into the sheets (fixed at 3.99 mm), were kept constant. 
Rockwell B hardness tests (HRB) were performed for all the welding conditions, following a 

5mm spaced grid in the central zone of the top of the specimens, according to ISO 6508. For each 
sample, three profiles of indentations were carried out moving from the joint axis to the base 
material. 

Developed approach. 
One of the main issues in the FSWed joints is represented by the desire to obtain welds having 

mechanical properties as close as possible to those of the base material. In this context, one of the 
most important characteristics is the surface hardness of the joints.  

Due to the importance of the prediction of these kind of properties without the need to execute 
experimental tests, the prediction models have become very useful in the scientific research. 
Nevertheless, these forecasting models are characterized by a limitation in the prevision since they 
supply a deterministic constant result for the same inputs, not considering the intrinsic variability 
of the process. This is a huge limitation typical also of the trained artificial neural networks (ANN). 
Indeed, the hypothesis behind the development of this models is that, even if the same architecture 
is considered, the ANN can be characterized by different connection weights and activation 
functions, obtainable through different training iterations. This means that same architecture, but 
different weights, generate different, even if still reliable, forecasts. This means that it might be 
possible to develop a model able to predict not only the required punctual value but also its 
confidence interval. This kind of model has been developed following the flow-chart reported in 
Fig. 1. 
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Fig. 1. Algorithm flow-chart. 

 
The following stages are considered: 

1. ANN architecture definition. The inputs and the outputs layers were defined according to 
the welding parameters and the final characteristic to be evaluated. Specifically, the input 
nodes (IN) were three and represented respectively the rotational speed of the tool (𝑠𝑠), the 
feed rate of the tool (𝑓𝑓) and the distance from the welding line (𝑑𝑑) where the hardness, 
which represented the output node (ON), has to be known. A single hidden layer was 
introduced since the literature supports the idea of introducing few hidden layers to avoid 
unnecessary complexity of the network. The number of hidden nodes (HN) was selected 
based on one of the most applied heuristic techniques found in the literature: the 
Kolmogorov’s Theorem, which demonstrates that a network with a single hidden layer can 
compute any arbitrary function of its input [8]. This theorem allows to estimate the size of 
the hidden layer as reported in Eq.1. 

𝐻𝐻𝐻𝐻 = 2 ∙ 𝐼𝐼𝐻𝐻 + 1 (1) 

2. ANN training. The dataset used for the ANN training contained 470 inputs combinations 
and the relative outputs, considered as target values. The dataset dimension fit with the 
requirements defined by Alwosheel A. et al. [9]. The dataset was based on the data of 
experiments performed to evaluate the surface hardness of the welded joints. Through a 
Matlab code, the ANN was trained to identify the weights, defining N=10. N indicated the 
number of ANN, with fixed architecture, considered for the multiple ANN approach trained. 
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This allows to obtain 10 ANNs with the same size, but with the layers differentiated from 
the weights of the connections and the activation functions. Levenberg–Marquardt 
algorithm was chosen as the training function for all the ANNs. 

3. Forecasting tests. A new group of experimental data were considered for the verification of 
the applicability of the algorithm. Specifically, 20 combinations of input parameters were 
selected, and the relative experimental results were collected, ensuring to consider inputs 
always included in the training interval of the network. These sets of inputs were introduced 
in the group of the trained ANNs obtaining 10 predictions for each combination, for which 
the average value was calculated. At this point, the idea of confidence interval was 
introduced to verify the reliability of the previsions and to forecast the intrinsic variability 
of the process. 

4. Confidence interval definition. Since the standard deviation of the data distribution was 
unknown, it was necessary to estimate the interval of the population average (µ) using, in 
addition to the sample mean (𝑋𝑋�), the sample standard deviation (𝑆𝑆), allowing to estimate the 
population standard deviation (𝜎𝜎). This can be done assuming that the random variable was 
normally distributed and, as a consequence, that the confidence interval can be defined by 
introducing the 𝑡𝑡-distribution. The 𝑡𝑡-distribution is similar to the normal distribution 
(symmetrical, bell-shaped, with mean and median equal to 0), but with a higher probability 
to fall into its queues than in the central part of the bell. Moreover, increasing the number 
of degrees of freedom (𝑛𝑛), the random variable 𝑡𝑡 tends to the normal distribution. Thus, 
considering α as the confidence level and 𝑛𝑛 as the sample dimension (represented by the 
number of repetitions of inputs combination introduced into the dataset), the confidence 
interval is estimated as reported in Eq. 2. Considering the degrees of freedom equal to 3 and 
an α equal to 5%, from the statistical table, 𝑡𝑡𝛼𝛼

2
= 4.3027. The confidence interval was 

estimated based on the training dataset. 

𝑋𝑋� − 𝑡𝑡𝛼𝛼
2
∙ 𝑆𝑆
√𝑛𝑛
≤ 𝜇𝜇 ≤ 𝑋𝑋� + 𝑡𝑡𝛼𝛼

2
∙ 𝑆𝑆
√𝑛𝑛

 (2) 

In this way, the estimated upper and lower bounds allowed to predict and define the interval where 
the results, in this case the surface hardness, can be placed if the experiments will be repeat more 
than once. Specifically, from the practical point of view, it was possible to predict HRB with a 
certain level of variability reproducing the intrinsic variability of the process, linked to external 
and uncontrollable factors. 
Results and Discussion 
The validation was performed by comparing the experimental and forecasted data and verifying 
their placement considering the predicted confidence interval. 20 combinations of inputs, 
indicating different welding conditions and hardness locations, were selected from the 
experimental tests (not used for ANN training): five hardness measurements for each combination 
of welding parameters by randomly selecting the distance from the welding line (𝑑𝑑). Table 2 
reports the combination used for the validation and the related results obtained from the 
experiments (performed as reported in previous section) and the average of previsions. It is 
important to underline that the data used for the validation are not related to a unique welding joint, 
thus resulting in a nonlinear distribution of the obtained hardness values in the typical FSW W-
shape. This choice was made because the main aim of this step was to demonstrate the validity of 
the developed method considering the totality of the dataset and not limiting it to a determined 
couple of inputs and their related output. Each ANN responds with a slightly different result from 
the others and this ANN behavior allows to assimilate these simulation repetitions to the intrinsic 
variability of the process, such as possible to observe by the standard deviation and the dispersion 
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of the data is coherent with a stable and feasible process. Furthermore, the error in prevision is 
very low showing a maximum error equal to 6.25%. As it is possible to observe more clearly in 
Figure 2, all the average values of the predictions are contained in the estimated confidence 
interval, the same for the ten predicted values. The validation process allows to demonstrate the 
reliability of the developed approach not only in the prediction performed by a single ANN, but 
also in the identification of a confidence interval in which the process results can vary due to the 
intrinsic variability. 
 

Table 2. Inputs combinations and ANN previsions. 
INPUTS TARGET PREDICTED OUTPUT 

S f d HRB exp MEAN Std. 
Deviation %Error 

1200 40 75 79 79.5 1.4 0.58% 
1200 40 60 79 78.9 0.5 -0.12% 
1200 40 10 75 70.3 1.2 -6.25% 
1200 40 -2.5 70 67.9 2.3 -2.93% 
1200 40 -35 77 77.4 1.0 0.56% 

1200 70 50 80 78.4 0.7 -2.05% 
1200 70 20 72 74.9 0.8 4.05% 
1200 70 2.5 75 71.6 1.2 -4.50% 
1200 70 -17.5 74 75.1 0.8 1.45% 
1200 70 -45 80 78.4 1.0 -2.03% 
1200 100 20 73 75.5 0.6 3.46% 
1200 100 2.5 76 73.0 0.6 -3.98% 
1200 100 0 76 73.0 0.6 -3.93% 
1200 100 -5 71 73.4 0.7 3.31% 
1200 100 70 79 78.8 0.5 -0.29% 
1500 70 25 79 77.0 1.0 -2.53% 
1500 70 10 78 74.5 0.9 -4.46% 
1500 70 0 76 73.4 1.3 -3.46% 
1500 70 -10 77 74.4 0.8 -3.36% 
1500 70 -12.5 79 77.4 1.2 -2.06% 
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Fig. 2. Validation results. 

Summary 
A new approach for the prevision of Rockwell B hardness values as a function of the distance from 
the center of the welding line of joints obtained by the FSW process was developed. The novelty 
of the model regarded the possibility to predict the results considering the intrinsic variability of 
the process linked to uncontrollable factors of the process.  

This means that, through the proposed approach, it was possible to correctly predict the surface 
hardness obtainable after a welding process, performed with the welding parameters used for the 
training. Furthermore, the approach was also able to show the confidence interval of the previsions. 

The present approach identifies a new method for the use of ANN in manufacturing processes. 
In this way, with the same input, it is possible to obtain different outputs, placed in a confidence 
interval acceptable from the statistical point of view thanks to the different distribution of the 
weights of the connections, reflecting more a real process that is always characterized by a slight 
variability in the results. 
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