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Abstract. After destructive natural disasters, it is necessary to quickly grasp the damage situation 
for the initial response. In recent years, studies on the method of the automatic evaluation of 
building damages due to disasters using the convolutional neural network (CNN), which is a deep 
learning methodology for image recognition, were conducted. In these studies, it was clarified that 
a large number of images are necessary to train the CNN with sufficiently high accuracy. However, 
the number of images of damaged building is limited. Therefore, in the present study, we used the 
generative adversarial network (GAN) to automatically generate a large number of imitation 
images of damaged and undamaged buildings and trained the CNN using imitation images to 
obtain a higher accuracy rate of the CNN. Then, the validity of the CNN for judgment of 
“damaged” and “undamaged” using imitation images was confirmed. In addition, photographs of 
actual buildings were input to the trained CNN as test data. 
Introduction 
In order to properly allocate people and equipment for emergency activities and emergency 
response after natural disasters such as earthquakes, it is essential to quickly evaluate the building 
damages after disasters. Usually, the emergency risk judgment and damage classification of 
buildings are visually determined by experts after disasters. However, it tends to take a long time 
to grasp the damage level of all buildings affected, because of the shortage of experts in rapid risk 
assessment and the widespread distribution of the damaged area. For example, in the case of the 
2016 Kumamoto earthquake, damage inspection by May 16 was done for 41,907 buildings, which 
is only approximately 30% of the total number of damaged buildings inspected by June 16 [1]. It 
is difficult to grasp the whole picture of building damages only by human inspection in a short 
period just after massive earthquakes. 

To solve this problem, several studies aiming to shorten the damage assessment period using 
the convolutional neural network (CNN [2]), which is a methodology of deep learning for image 
recognition, have recently been conducted. In these studies, the degree of damage of buildings is 
automatically determined from photographs of the exterior [3]. For training of the CNN, a large 
amount of image data is essential to improve the accuracy of judgment. However, preparing a large 
amount of building damage images is difficult because destructive disasters rarely occur. In order 
to solve these problems, Fujiu et al. [4], Yamaguchi et al. [5], and the present authors [6] have 
used 3DCG models to generate a large number of images of buildings. The present authors pointed 
out that the assessment accuracy of CNNs trained by 3DCG- imitation images was low because 
the similarity between 3DCG building models and actual buildings was low. Time and effort are 
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required to replicate various types of damaged buildings in detail in 3DCG that are comparable to 
those in actual buildings. 

Therefore, in the present study, we use the generative adversarial network (GAN [7]) to easily 
generate many imitation images with high similarity to actual building images and used these 
images to train the CNN for building damage assessment. In addition, to validate the proposed 
method,  photographs of actual  damaged and undamaged buildings, were input to the trained CNN 
for building damage assessment. 
Generation of imitation images of damaged and undamaged buildings using the generative 
adversarial network (GAN) 
In this study, the GAN is used to generate numerous imitation images of damaged and undamaged 
buildings. The network structure of the GAN used in the present study is shown in Figure 1. The 
GAN is a neural network consisting of two parts. One is the generator, which generates imitation 
image data, and the other is the discriminator, which judges whether the image is a real image. 

The model used for image generation in the present study is FastGAN [8], which is one of the 
least computationally intensive GANs and can generate images with relatively little image data. In 
the process of sequential up-sampling, the generator uses the skip-layer excitation module to fuse 
the most recent feature map with those of four lower levels, improving stability without increasing 
the computational complexity. 

 

 
 
The mutual learning process of GAN is generally expressed by the following equation: 

 
min
G

max
𝐷𝐷

𝑉𝑉(𝐷𝐷,𝐺𝐺) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷(𝑥𝑥)] + 𝔼𝔼𝑥𝑥~𝑝𝑝𝑧𝑧(𝑧𝑧) �log �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)��� (1) 
 
where 𝑉𝑉 is the objective function, 𝑥𝑥 and 𝑧𝑧 are input data, and noise variables, 𝐷𝐷(𝑥𝑥) and 𝐺𝐺(𝑧𝑧), are 
the output of the discriminator and generator, respectively, 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑝𝑝𝑧𝑧 are distributions of 
training data and the noise variables, respectively, and 𝔼𝔼 represents the expected value. The 
generator learns to minimize the objective function so that it generates data that the discriminator 
cannot distinguish from the training data. On the other hand, the discriminator maximizes the 
objective function so that the discriminator can classify the training data and the generated data 
with high accuracy. 

In the present study, two types of GANs are constructed to generate images of damaged and 
undamaged buildings by preparing two types of photographs. The photographs of damaged 

Figure 1. Network structure of the generative adversarial 
network (GAN) based on FastGAN [8].  
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buildings for training were taken after the 1995 Kobe earthquake, the 2011 Tohoku earthquake 
(including tsunami damage), and the 2016 Kumamoto earthquake, in Japan. Some of the 
photographs of undamaged buildings used in the training are of actual undamaged buildings taken 
in urban areas and some were obtained from the Internet. The sizes of images used in the present 
study were modified to 512 × 512 pixels. A total of 4,040 photographs, consisting of 1,995 and 
2,045 photographs of damaged and undamaged buildings respectively, were given to the GAN. 
The photographs in Figure 2 show examples of input data. The batch size was set to 10. The 
gradient accumulation was set to 4. The learning rate was set to 0.0002, and the number of epochs 
(number of trials) was set to 150,000. 

The photographs in Figure 3 are examples of imitation images. In the images with 1,000 epochs, 
trees and debris are reproduced fairly well, but the building images are completely unacceptable. 
In the image with 100,000 epochs, trees, roads, and buildings are created fairly well, and the 
images are relatively similar to photographs of the actual items. However, the overall images are 
not excellent, suggesting that learning is still insufficient. When the number of epochs reaches 
150,000, buildings, debris, and trees are clearly represented, and the imitation images are 
approximately equivalent to photographs of actual items. Therefore, we use the generated images 
by the GAN with 150,000 epochs to train the CNN, which is described below. 

 

 
 

Photographs of damaged buildings Photographs of undamaged buildings 

Figure 2. Actual building photographs input for the generative adversarial 
network (GAN). 
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Training and validation of the convolutional neural network (CNN) for damage evaluation 
using imitation images of buildings 
In this section, the CNN model used in the present study is introduced. Then, the results of CNN 
training and validation for damage evaluation using imitation images of buildings will be 
presented. 
Overview of the CNN 
We construct the CNN, which takes advantage of the fact that many data have local features, as 
proposed by LeCun et al. [9], to determine whether a building is damaged. 

In the present study, we use Caffe [10], a deep learning framework, and AlexNet [11] as the 
CNN architecture. The structure of AlexNet in Figure 4 consists of five convolutional layers, three 
pooling layers, and three fully connected layers. Image data were previously resized to 256 × 256 
pixels, converted to normalized RGB values, and input to the CNN. The training data were 
classified into two categories, “damaged” and “undamaged,” with “damaged” set to 0 and 
“undamaged” set to 1, and the learning rate was set to 0.01. 

The convolutional layer detects local features of the image data by convoluting the input image 
with filters. The pooling layers are used to achieve invariance to small movements, thereby 
transforming the input data into a more manageable form. AlexNet uses max pooling in the pooling 
layer, which is a function that outputs the value of the largest component of the input. The fully 
connected layers combine the image data from which the feature portions were extracted in the 
convolutional and pooling layers into a single node and outputs the values transformed by the 

Figure 3. Examples of damaged and undamaged building images generated by the 
GAN: (a) 1,000 epochs, (b) 100,000 epochs, and (c) 150,000 epochs. 

(a) 

(b) 

(c) 
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activation function. The output of the last of the three layers, the fully connected layer, contains a 
SoftMax function that transforms the output score of each image into the probability between 0 
and 1. 

 

 
 
Convolutional neural network training using imitation images generated by the GAN 
The CNN was trained and validated using a total of 300,000 imitation images of buildings, 150,000 
each of images of damaged and undamaged building generated by the GAN. Here, 200,000 images 
were used for training, and the remaining 100,000 images were used to verify the training results. 
The training results in Figure 5 show that the accuracy of the validation data for 10 epochs was 
99.56%, and the loss function value was 0.012. This indicates that the learning process progressed 
well. The accuracy of the validation data for the first epoch was 98.28%, and the loss function 
value was 0.045. One possible reason for this is that the training data of 200,000 images were 
sufficient. 
 

 
 
  

Figure 4. The structure of the CNN based on AlexNet [11].  

Figure 5. Convolutional neural network training and 
validation result with building imitation images.  
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Validation of CNN using photographs of actual buildings 
In this section, photographs of actual damaged and undamaged buildings were input to the trained 
CNN as test data to examine the validity of the damage assessment of the CNN trained by images 
generated through the GAN. 
Validation using photographs of actual buildings and evaluation indices 
A total of 1,000 photographs of actual buildings, 500 each for damaged and undamaged buildings, 
were input as test data to verify the accuracy of the classification results. 

The test results in Table 1 suggest that the model developed in the present study is generally 
suitable for determining both damaged and undamaged buildings for photographs of actual 
buildings. However, 57 of 500 (11.4%) photographs of damaged buildings were determined to be 
of undamaged buildings, whereas 102 of 500 (20.4%) photographs of undamaged buildings were 
determined to be of damaged buildings. Figure 6 shows examples of photographs of actual 
buildings that were misclassified. The damaged buildings tended to be determined to be 
undamaged when the building experienced story collapse, the damage was of a small to moderate 
level, or there was little debris. The undamaged buildings appear to be judged to be damaged when 
electric wires and trees were included in the photographs. 

 

 
 

 
Next, the indices for evaluating the test results are examined more specifically. The evaluation 

indices are accuracy, precision, recall, and F-measure, which are calculated by the following 
equations: 

Table 1. Convolutional neural network test results for photographs of actual 
buildings. 

Figure 6. Examples of photographs in which the acutual building were misclassified: (a) 
through (c) are photographs of damaged buildings judged to be undamaged buildings, 

and (d) through (f) are photographs of buildings judged to be damaged. 

(a) (b) (c) 

(d) (e) (f) 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇
(2) 

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
(3) 

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
(4) 

𝐹𝐹 −𝑚𝑚𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃 =
2 × 𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃 × 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙
𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃 + 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙

(5) 

 
where TP (true positive) is the number of damaged buildings determined to be damaged by the 
CNN, TN (true negative) is the number of undamaged buildings determined to be undamaged, FP 
(false positive) is the number of undamaged buildings judged to be damaged, and FN (false 
negative) is the number of damaged buildings judged to be undamaged. 

In Figure 7, all the indices are higher than 0.8. In particular, recall was higher than precision. 
Although the ratio of damaged buildings judged to be damaged was high, relatively many 
undamaged buildings were also judged to be damaged. Precision, which is the ratio of the number 
of photographs of correctly classified damage to the number of photographs of improperly 
classified damaged, was 0.81, indicating that the proportion of false positives was low. Therefore, 
F-measure, the harmonic mean of precision and recall, is also generally reasonable. The accuracy 
was 0.84, which means that all of the predicted results showed good agreement with the correct 
results. These results indicate that the CNN trained by the imitation images generated by the GAN 
was assessed validly. 

 

 
 

Visualization of the evidence of predictions using Grad-CAM 
In deep learning, the judgment of constructed models is often regarded as a black box, and it is 
often difficult to explain the evidence for the judgment. Therefore, in order to examine the cause 
for the judgments of misclassification of photographs of actual buildings by the trained CNN, we 
applied gradient-weighted class activation mapping (Grad-CAM [12]). This is a technique to 
visualize the important regions in the image, based on the idea that the areas that contribute most 
to output values of the predicted class are important for classification. In general, the gradient of 
the output value in the predicted class of the final convolutional layer is used. 

Figure 8 shows visualization examples of misclassified by applying Grad-CAM to photographs 
of damaged and undamaged buildings. First, in visualization of discriminative regions in 
photographs of actual damaged buildings, there were cases in which the gradient of the concepts 

Figure 7. Indices for evaluating the test results. 
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was large not only for the target building in the image, as in Figure 8(b), but also for buildings 
other than the target building and the sky, as in Figures 8(a) and 8(c). Next, in visualization of 
discriminative regions in photographs of actual undamaged buildings, in Figures 8(d) and 8(e), the 
gradient in the center of the photograph is larger, indicating that this region corresponds to the 
building, respectively. On the other hand, in some cases, such as Figure 8(f), the overall gradient 
was small and the evidence for the predictions was unclear. Therefore, for more accurate 
judgments, it is considered effective to apply a method such as semantic segmentation [13] to both 
the training and test images to mask the areas other than buildings and focus only on buildings. 
Conclusions 
In the present study, we firstly generated imitation images of buildings using the GAN, which is 
an image generation method based on deep learning, to easily generate a large amount of exterior 
image data of the damaged and undamaged buildings. Then the generated images are used as the 
input data for training a CNN that determines damage to buildings caused by a natural disaster. 
The accuracy of the assessment based on indices such as accuracy, precision, recall, and F-measure 
are investigated. Finally, the evidence of predictions of the CNN was investigated through Grad-
CAM. 

We found that images generated by GAN with 1,000 and 100,000 epochs were generally 
distorted and poorly learned, whereas the imitation images at 150,000 epochs had a quality almost 
equivalent to photographs of actual items. 

The accuracy rate when the validation data were input to the CNN trained by the imitation 
images generated by the GAN was 99.56% for 10 epochs. This result indicates that the training 
was successful. Furthermore, the accuracy rate of the validation data for the first epoch was 
98.28%, presumably because the training data of 200,000 images was sufficient. 

Furthermore, when the CNN was tested using photographs of actual buildings, the model 
developed in the present study is generally suitable for determining both damaged and undamaged 
buildings. The CNN tended to classify undamaged buildings with electric wires and trees as 

Figure 8. Examples of visualization of the evidence of predictions using Grad-CAM to 
photographs of acutual buildings that were misclassified: (a) through (c) are photographs 

of damaged visualized areas of interest, and (d) through (f) are photographs of 
undamaged visualized areas of interest. 

(a) (b) (c) 

(d) (e) (f) 
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damaged ones. Whereas the damaged buildings with story collapse, small to moderate damage, 
and little debris were classified as undamaged. 

In addition, when Grad-CAM was applied to the CNN, we found that some images had a large 
gradient for the target building, but in other cases, the gradient of the predictions for other buildings 
was larger or the overall amount of the gradient was smaller. In the future study, to improve the 
accuracy of the CNN, it is considered to be effective to mask the areas other than buildings and 
have the CNN focus only on buildings. 
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