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Abstract. Ultrasonic methods are widely used for the detection and characterisation of defects in 
multi-layered bonded composites. However, quantitative reconstruction of defects, such as 
disbonds, which can affect adhesive bond integrity and severely reduce the strength of assemblies, 
remains challenging. In this work, a supervised full convolutional network (FCN)-based ultrasonic 
method is used to quantitatively reconstruct defects hidden in multi-layered bonded composites. 
This proposed method consists of a training process and a predicting process. In the training 
process, the FCN builds a non-linear mapping from the ultrasound data to the corresponding 
longitudinal (L-wave) velocity model. In the predicting process, the network obtained from the 
training process is used to directly reconstruct the L-wave velocity models from the new measured 
ultrasonic data of adhesively bonded composites. The simulation results show that the FCN-based 
ultrasonic inversion method has the ability to achieve the accurate quantitative reconstruction of 
ultrasonic L-wave velocity models of the high contrast defects, which has potential in online 
detection of multi-layered bonded composites. 
Introduction 
Multi-layered bonded composites are widely used in aerospace, marine, nuclear and offshore 
industries due to their advantages of easy assembly, low manufacturing cost, and uniform 
distribution of mechanical loads resulting in reduced stress concentration [1]. However, decreased 
bond strength or defects may occur in composite materials due to external loads, various harsh 
environmental conditions or natural ageing [2]. Therefore, an accurate and efficient assessment of 
the bond quality is critical for structural integrity and reliability. Ultrasonic non-destructive 
evaluation methods have proven to be useful for assessing the health status of multi-layered 
bonded composites [3]. 

The detection of deep defects can be provided by ultrasonic bulk wave testing, which can be 
broadly divided into techniques applied in the time domain and the frequency domain [4]. For 
example, through-transmission and analysis of pulse-echo signals in the time domain [5], as well 
as the fundamental through thickness resonance frequency [6] have been used for detecting 
disbonds, albeit at a degree of quantitative assessment of the multi-layer structures. Nevertheless, 
when extended to the quantitative detection of disbonds and other defects, little work has been 
carried out to achieve quantitative reconstructions of these high contrast defects in adhesively 
bonded structures by building accurate ultrasonic velocity models.  

There are two major groups of velocity model building techniques: exploiting the focusing 
properties of migration and using information like traveltime extracted from the data [7]. Many 
techniques in these two major groups may require either repeated application of the migration or 
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time-consuming picking of traveltime information from the measured data [8]. Therefore, there is 
a need for a method that can surpass the accuracy of these conventional methods based on all the 
information contained in the measured data while avoiding computational complexity and 
inversion constraints. 

Deep learning is a subset area of machine learning that has demonstrated the potential to 
alleviate these restrictions [9]. Deep learning can exploit all signal content in the data for predicting 
models, can offer computational advantages over traditional inversion methods, and does not 
depend on the reliability of the initial model [10]. In deep learning, the convolutional neural 
network (CNN) is one of the most commonly used frameworks among deep neural networks, 
which is capable of approximating nonlinear mapping from input to output [11]. CNNs enable 
image and label recognition and different types of data association, especially for inverse problems 
such as model/image reconstruction and image super-resolution [12]. This development opens up 
new perspectives for signal inversion and velocity model reconstruction, where some work has 
already made progress [13]. However, when using standard multilayer perceptrons in CNNs, i.e. 
fully-connected layers, CNNs are computationally expensive because of the large number of 
dimensions involved, and too many parameters in fully-connected layers slow down the training 
speed of the network [14]. Besides, conventional CNNs cannot well identify highly complex 
settings containing different backgrounds and a lot of overlap [15]. To address these issues, a fully 
convolutional network (FCN) is proposed to replace the fully-connected layers with only 
convolutional layers, which can better preserve the neighbourhood information in the pixel-wise 
outputs [16]. Furthermore, a modified FCN with an encoder-decoder structure can yield more 
precise predictions. It contains a contracting path for capturing the useful features and a symmetric 
expanding path for enabling precise localization or reconstruction, showing good performance in 
velocity model reconstruction. 

In this work, we propose a new FCN-based encoder-decoder network that can directly 
reconstruct the ultrasonic longitudinal wave (L-wave) velocity models of multi-layered bonded 
composites containing high contrast defects from raw ultrasonic data [17]. The proposed FCN-
based network can be utilised to approximate a nonlinear mapping from the full matrix capture 
(FMC) data (input) to the corresponding ultrasound L-wave velocity model (output) in the training 
process. In the predicting process, the trained network can be used to predict the unknown multi-
layered bonded structures using the new measured FMC data. The remainder of this work is 
organized as follows. The FCN-based ultrasonic inversion method is introduced. Then, numerical 
models and results of adhesively bonded structures with various defects are presented. Finally, the 
conclusions are summarized. 
FCN-based ultrasonic inversion method 
The purpose of this work is to directly use the FMC data (input in the data domain) to reconstruct 
a 2D ultrasound L-wave velocity model (output in the model domain), and therefore the FCN-
based ultrasonic inversion method is proposed. The basic idea of this method is to establish the 
non-linear mapping between input and output, which can be expressed as 

ˆ = ( ; ),Netv d Θ  (1) 

where v̂  denotes the 2D predicted L-wave velocity models, and d is the measured ultrasonic FMC 
data. This method includes a training process and a predicting process, as shown in Fig. 1. Before 
training, the true L-wave velocity models of adhesively bonded composites with different defects 
(e.g., location and length) are randomly created and then the measured ultrasonic FMC signals are 
obtained from simulations.  
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Figure 1. Structure of FCN-based ultrasonic inversion method. 

 
To achieve the ultrasonic velocity model reconstruction directly from the measured ultrasonic 

FMC data, the proposed encoder-decoder architecture of the network has two major modifications 
compared to the conventional FCN architecture to match the linear phased array ultrasonic testing 
of multi-layered bonded composites. First, the ultrasonic FMC data instead of images is acquired 
as input, and the number of transmitters in each model is used as the number of channels for the 
input. Second, the input and output of traditional FCN are in the same image domain, while the 
proposed architecture is used to realize the domain transformation from the data domain to the 
model domain. 

In the modified FCN structure, the process of extracting the feature maps from the input 
ultrasonic FMC data is a down-sampling process (encoder), as shown in Fig. 2. Taking the 
simulated FMC data of 2000×64×64 (sampling points × receivers × transmitters) as an example, 
the time step is 5e-9 s (i.e., the total time is 1e-5 s) in this work and this data contains 64 × 64 time 
traces. The feature map obtained by the convolutional operation has 64 channels and its dimension 
is 500 × 64 × 64. Then, the number of channels is doubled in each operation of the encoder path. 
After that, the feature map extracted by the encoder is enlarged by the corresponding decoder (up-
sampling process). Finally, a cropping process is added after the last feature map to ensure that the 
output size is the same as the input size. 
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Figure 2. An illustration of the network architecture used in the FCN-based ultrasonic inversion 
method. Note that conv, BN and ReLU denote 2D convolution, batch normalization and Rectified 

Linear Unit, respectively; (2000×64×64) represents (sampling points × receivers × 
transmitters); (201×401) is the number of grids in the vertical and horizontal directions of the 

velocity models.  

In the training process, the proposed network requires fitting a nonlinear function from the FMC 
data to the corresponding L-wave velocity model, so the network is constructed by solving an 
optimization problem: 

n n
1ˆ = arg min ( , ( ; ))

N

n=1
L Net

mN ∑Θ
Θ v d Θ , (2) 

where N is the number of training dataset and m represents the total number of pixels in one 
velocity model. The loss function L measures the difference between the predicted velocity models 

nv̂ and true velocity models nv . In the modified FCN, L is set to n n n nˆ ˆ( , ) = ( (-log( )) - )L β∑ × ×v v s v v , 
where s represents the matrix of pixel-wise probability. β is a user-defined weight matrix based on 
the matrix s to make a trade-off between different colours. | · | represents the absolute value. In this 
work, we use a small subset of the whole training dataset (i.e., the mini-batch size h) in each 
iteration to calculate Lh due to the relatively large number of the training dataset N. Then, Eq. (2) 
can be rewritten as 

n n
1ˆ = arg min ( , ( ; ))

h

h
n=1

L Net
mh∑Θ

Θ v d Θ . (3) 

The small batches of the shuffled training data are sequentially processed to ensure one epoch 
e (i.e., single pass), which requires exactly one forward and one backward pass through all training 
data. In this work, the Adam algorithm is used to update learnable parameters to minimise the 
objective function: 

(e+1) (e) n n
1= - α ( ( ; ; ))hg L

mh ΘΘ Θ d Θ v▽ , (4) 

where g(∙) denotes a function and α is a positive learning rate. The gradient of Lh is calculated 
using the chain rule to find the derivative of the weights and biases of Lh.  
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  In the predicting process, the unknown velocity models can be obtained from the new measured 
FMC data using the trained network. All computations described next are performed on a desktop 
workstation (GeForce GPU, Ubuntu operating system). 
Numerical models and results 
Data preparation. In this section, the data preparation, including ultrasonic L-wave velocity 
models of adhesively bonded composites, and modelling procedures for both training and testing 
datasets, is presented. 

To train an efficient network for quantitatively reconstructing defects in multi-layered bonded 
composites, a relatively large number of ultrasonic velocity models are first randomly generated. 
The adhesively bonded models by bonding two metal layers with an epoxy resin adhesive layer 
are considered in this work. The configuration of the multi-layered composite is shown in Fig. 3. 
The dimensions of the top titanium layer, the bottom aluminum layer and the adhesive layer are 
40 mm × 10 mm, 40 mm × 1 mm and 40 mm × 9 mm, respectively. Different notches are randomly 
generated in the top layer. Different sizes and locations of disbonds in the adhesive layer are also 
introduced. The simulated training dataset contains 3000 ultrasonic L-wave velocity models, and 
two typical velocity models are shown in Fig. 4. Ultrasonic L-wave velocities of aluminum, 
titanium, epoxy resin adhesive and air are 6235m/s, 6144m/s, 2100m/s, and 340m/s, respectively. 

In this work, the implicit time-domain staggered-grid finite difference scheme using second-
order in time and eighth-order in space is used to solve the acoustic wave equation. We use a grid 
spacing of 0.1 mm in both the x and z directions of the velocity model. This guarantees the 
calculation accuracy which requires at least four grid points per shortest wavelength. To avoid 
reflections coming from the left, right and bottom edges, the space domain is surrounded by 
perfectly matched layers. The input Ricker signal with a central frequency of 5 MHz is monitored 
by a linear phased array with 64 equally spaced elements (pitch of 0.6 mm) placed on the top 
surface of the model (see Fig. 3). Note that only the ultrasonic L-wave is excited and recorded, 
and shear-waves and mode conversions between L-waves and shear-waves are not considered here. 

 
Figure 3. Configuration of multi-layered bonded composites. 

 
Figure 4. Representative ultrasonic L-wave velocity models. The unit in this figure is mm. 
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In the testing dataset, the ultrasonic L-wave velocity models have similar distributed structures 
as the examples in the training dataset because the FCN-based inversion method proposed in this 
work is a supervised learning method. Note that the test examples are not included in the training 
dataset and are therefore unknown in the predicting process. In this work, 10 examples are used to 
evaluate the proposed method. 
Inversion results. In this section, the inversion is performed on the 1 mm-thick bonded composites. 
In the training process, the learning rate of the Adam is set as 10-3, the number of epochs is chosen 
as 120, and the batch size is 10 [16,17]. After training, new ultrasonic FMC examples from the 
testing dataset are used to test the performance of the FCN-based ultrasonic inversion method. 

Two representative true L-wave velocity models from the testing dataset are shown in Figs. 5(a) 
and 5(c), and Figs. 5(b) and 5(d) show the corresponding L-wave velocity reconstructions using 
the FCN-based ultrasonic inversion method. It is clear that high-quality quantitative images of the 
high velocity contrast are achieved with good reconstructions of the locations and the shapes of 
the defects. The sizes of notches and the disbond with a circular shape are slightly larger than the 
true velocity models. The possible reason could be that the spatial correspondence between 
features in the model domain and data domain is not considered in this work. 

 
Figure 5. Reconstructions of L-wave velocity models based on the simulated data. Notches are 

contained in the top layer of titanium and the disbonds are hidden in the adhesive layer, as 
shown in the true L-wave velocity models of (a) and (c). (b) and (d) show the FCN-based 

ultrasonic inversion reconstruction. The unit in this figure is mm. 
Conclusions 
In this work, a supervised FCN-based ultrasonic inversion method is proposed for the quantitative 
reconstruction of multi-layered bonded composites. It utilises a network to directly transform 
ultrasonic FMC data into L-wave velocity reconstructions. The network obtained from the training 
process is then applied to reconstruct the L-wave velocity model of multilayer bonded composites 
from the test dataset. The performance of the proposed FCN-based inversion method is tested with 
the simulated data. The numerical results are in good agreement with the true velocity models. 
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