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Abstract. Current approaches to maintenance of rolling stock bogies are focused on compliance 
to wear limits as stipulated by OEM specifications. OEM recommendations are critical to 
providing an industry wide approach to safety and compliance. These are not operation specific 
and are often not the most cost-effective solutions. A system approach to reliability is an 
established approach that is applied in less complex systems where the relationships between 
components are well defined with historical data and predictable conditions. Extending this 
approach to more complex multi-variate systems where many relationships are not intuitively 
obvious or mathematically defined presents a challenge. Machine learning techniques have been 
applied to address such problems with examples in image recognition, tool wear prediction using 
multiple sensory inputs and estimating railway bogie wear using vibration inputs. [8,9,10] The aim 
of the study is to extend and adapt machine-learning techniques to the area of developing 
maintenance strategies for optimal business benefit with a specific focus on railway bogie 
maintenance. This study aims to present an insight into the variables, which includes bogie 
tracking condition affecting track side wear rate. A finding is that an in-depth study of each 
independent variable’s individual impact is a necessary step to efficient modelling. These include 
track geometry, operating and bogie component wear variables.  Track side wear, curve radius, 
superelevation and track top variance have been found to be significant predictors of track side 
wear rate. These impact predictions are not consistent between the different rail tracks and are not 
exhaustive. Specifically, the impact of bogie performance requires inclusion. Combining these 
variables mathematically using statistical inference and convolutional theory with maximum 
likelihood estimators would establish a predictor for side wear rate for the specific operation. The 
paper finally discusses the relationship of area wear rate to side wear rate and the influences of 
grinding frequency and rail material type.  
Introduction 
Logical reasoning is used for significant maintenance /renewal programmes in the heavy haul rail 
industry. This approach generally lacks analytical accuracy on determining the optimal outcome 
regarding business value generated. The challenge in creating the optimal strategy is due to the 
inherent complexity of relationships between components, assets and business value metrics with 
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multiple feedback loops and differences in the timing of impacts. A closed form mathematical 
solution will in general not be able to account for all variables and conditions. Such a solution 
needs to be uniquely derived for specific operations due to the different environments in which 
railways operate. These challenges lend itself to computational modelling with real-time learning 
to account for changing environmental conditions. The research question is if such modelling can 
be developed by embedding the techniques of deep machine learning to achieve the business value 
outcome.  

A body of research exists on linking maintenance strategies with maximising business value 
such as improving asset up time and reducing total maintenance cost spend. [1,2,3,4] Topics of 
research that combine the subject of maintenance strategies with machine learning include fault 
detection using condition monitoring data [5], sensor inputs to condition monitor tool wear [6] and 
fault diagnosis in bearings [7]. In these examples, machine learning is utilised to achieve reliable 
fault detection through condition monitoring. The goal is improved business shareholder value by 
productivity improvement and/or cost reduction. More specifically, in railway maintenance 
applications, machine learning has been researched for bogie maintenance [8], track defect 
detection [9] and for predicting wheel and rail interface wear [10]. 

This paper discusses the key variables to be analysed and the approaches in developing a 
learning model to link the impact of physical railway rolling stock, operating and track variables 
to the track wear rate. These variables are a core aspect of the larger framework to be defined 
which links the cost of maintenance activity on specific components to the net business value add, 
usually measured in terms of net revenue. The learning to be applied represents the gathering of 
condition data that describes the wear patterns of track and rolling stock under different operating 
and geometrical constraints. The specific focus will be on the impact of bogie condition on track 
maintenance.  

Bogie fleet operational performance is represented by the mean and variance of the fleet flange 
difference. The current mean+3 standard deviations of the transformed data will be added as a 
constant term in the regression. This is because the track variables are currently measured across 
the track network at a single time-stamp, and given that the fleet operates randomly on all sections 
of the track network. The extension of the modelling to include data at different time stamps is 
discussed. 
Modelling Approaches and Assumptions 
Track maintenance and consequential downtime is primarily influenced by grinding or re-railing 
activity. Re-rail occurs once the track has been ground to minimum acceptable vertical height. 
Grinding is carried out to restore track profile after wear (both top and gauge) and remove surface 
defects (rolling contact fatigue). The wear rate due to the rolling stock may be influenced by GMT, 
asymmetrical loading due to wheel wear and changes in lateral loading due to operating speed, 
curve radius, superelevation and TCI. Ballast condition and tamping frequency may also play a 
role in wear rates as an influence on the dynamic behaviour of the rolling stock.    

The modelling approach is initially based on single time-stamp data with limited available data 
at different time-stamps. For single time-stamps, the data is 2-dimensional and explains the 
relationhips of the variables to SWR spatially across the network. The time-dimension is excluded 
and more specifically implies that the variable that explains bogie performance across the rolling 
stock fleet is necessarily represented as a constant. This is a consequence of the entire train fleet 
operating randomly over all parts of the network. The constant chosen will be represented by the 
wheel fleet flange difference mean + n*standard deviations calculated for wheel trip range <100 
to more closely represent bogie condition and not fleet-wide wheel condition. The value of integer 
“n“ can be in the range of 1 to 3. 
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The impact of bogie condition is expected to directly influence side wear (gauge) rate (SWR) 
due to its impact on bias tracking and consequential flange wear difference (FD) across a wheelset. 
The use of data at multiple time-stamps will enable individual sections of the track to be analysed 
for the relationship of bogie FD to track SWR where track variables Curve radius, Superelevation 
and Gradient become constants.  

The approach will be to formulate multiple regressions on individual track sections with 
significant SWR across time stamps. Combining the regression across time-stamps, where SWR 
is significant, with that at a single time-stamp across the network will result in a set of simultaneous 
equations to be solved to relate SWR to bogie FD in combination with the other variables of 
significance. An upgrade to the recording instruments and database storage is in progress which 
will enable the capturing of more wear rate data across multiple time-stamps.  

The use of data across multiple time-stamps for individual track sections may indicate that the 
analysis at a single time stamp is redundant. However, the data where SWR has significant 
movement is limited to only certain track sections. The limited time-stamps currently available 
and the extended periods of time required to collect additional data implies that the number of data 
points available for regression at each track section is limited by a factor of 100 or more compared 
to single time-stamp data across the network. The relation of bogie condition to side wear rate on 
each track section will then be an input to  the maintenance plans required for each section 
respectively. Summing across the rail network will provide the overall downtime impact. A 
complication is that Area wear which is the sum of side and top wear significantly influences 
grinding frequency and hence downtime impact.   

The selection of regression technique is dependent on the behaviour of SWR with each of the 
variables. With multiple variables, the solution calls for multiple regression. Linear multiple 
regression requires each variable to have a linear relationship with SWR. This is not true from the 
data behaviour discussed further on. An adaptation for applying linear regression is for non-linear 
relationships to be transformed into linear forms. This can be complex but not impossible where 
there is a mixture of linear and non-linear relationships to SWR. In applying non-linear regression, 
the initial step is to choose representative function types for each variable. This can be derived 
from a study of the data scatter plots. Representative nonlinear functions can be polynomial, power 
terms, logarithmic, combinations thereof [16] or specialised forms of these described in [17] such 
as Richards’ curve, Gompertz Growth Curve and the Michaelis-Menten Model. Combining these 
into an additive equation is a further assumption that will require validation. Where a variable is 
likely dependent on another variable, adding in a multiplication term may compensate [16].  

SWR may behave differently for different ranges of each variable. Unique regressions may then 
be applied for different combinations of variable ranges. The selection of a non-linear function can 
be simplified where the data range for each variable is split piecewise where less complex 
polynomial approximations can be developed. For n variables where each variable is split into  r1, 
r2, r3,....,rn distinct ranges respectively , the total regression combinations required to be analysed 
is r1r2r3....rn. The total number of regressions necessary can be reduced where a variable has an 
insignificant relationship to SWR in any of the ranges. In such cases, the variable is removed or 
the range is limited to only significant ranges of the variable. Each regression equation then 
predicts the SWR for specific track sections. In combination, the regressions will explain the SWR 
across the network. 

A general multiple non-linear regression equation is as below [17] where Y is the dependent 
variable, X = {X1, X2, X3,….,Xp}is a p-dimensional vector of  independent variables, β = 
(β0,β1,β2,β3,…,βk) is a k-dimensional vector of parameters and ε is the random error term or 
residual. 
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Y = ƒ(X,β)+ ε        (1) 
     

The assumptions necessary for non-linear regression are the same as for linear regression [14], 
[15] and [16]:  

1. No correlation between independent variables.  
2. Linearity and independence of residuals or no autocorrelation between residuals. 
3. Residuals should be normally distributed with zero mean 
4. The residuals should be distributed with equal variance ( Homoscedasticity) 

In non-linear regression, assumptions (3) and (4) are not necessarily satisfied but meet the 
normality criteria where the sample size is large enough because of asymptotic theory [17] 

Methods used in non-linear modelling include Newton’s, Gauss-Newton or the Levenberg-
Marquardt Methods.[17] A gradient descent algorithm together with a function to optimise will be 
explored.[17] This is either the ordinary least squares formula (OLS) to minimise or the likelihood 
estimator to maximise (MLE). Both estimators yield the same result for normally distributed 
residuals [14]. 
Data cleansing and analysis 
The variable data was initially taken in a single time stamp across the track network. The track 
network comprises an east track (carrying empty trains to the Mine) and west track (carrying 
loaded trains back to Port).  

For each of the variables analysed, initial regression plots showed significant difference in 
relationships with SWR for each of the tracks.  
Table 1: Summary of individual correlations of independent variables to SWR split between East  

and West tracks

 
To improve the regression accuracy across the variable range, scatter plot boundaries were 

defined for changes in the relationship. Estimating these change over points visually lead to the 
development of piecewise regression estimation in a single variable for each case. 

This approach benefited with a more detailed investigation into the relationship which often 
hightlighted new signficant variables or showed dependence between variables. It also helped to 
understand and distinguish correlation with and without causation. An example was the study of 
the variable SW on SWR for the east track. At R squared = 38%, SW potentially represents the 
most signficant relationship to SWR. 
Data range for SW was split into ranges from 0 to 1.37, 1.37 to 4mm and above 4mm. 0 to 1.37 
represents 80% of the data points, whilst the range above 4mm represents less  data but indicates 
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a change in relationship that shows much higher correlation at R squared = 53%. Individual 
scatter plots for these regions are shown in Fig 1 and 2.  

 

Fig 1 (a) East Track Population  Fig 1 (b) East Track SW < 1.37 

 

Fig 2 (a) East Track 1.37 < SW <4  Fig 2 (b) East Track SW > 4 

For range SW < 1.37, two distinct populations are evident and are defined with SWR > 0.6 and 
SWR<0.4 respectively and were compared across the following variables: Track grinding 
frequency within last year, curve radius, location, vertical wear, TQI and rail material type. Test 
used was 2-sample T for each variable except for a proportion test for rail material type. 

There was significant difference between the 2 populations with respect to grinding frequency, 
vertical wear, TQI, curve radius and rail material type. These variables did not show sigificant 
correlations to SWR with R squared summing to a maximum of 14% . Aspects to investigate 
include track gauge variation and operating variables of speed and braking.   

For SW >4, two populations were also defined with SWR >2.5 and SWR <1.5. Comparing 
these populations using the same techniques showed significant difference with respect to grinding 
frequency and rail material type. Seperating the data for THH rail material type showed significant 
polynomial R2 correlations of SWR to AWR (32%), AW (22%), Grinding frequency (6.6%), 
Curve Radius (5%) and Cant (3.4%) except at extreme SWR values where there were 6 data points 
with large residuals.  The outliers had excessive Cant angle for the average speeds recorded 
through each section. 

A strong R2 correlation between Grinding frequency and AWR  (60%) is also evident except at 
5 extreme AWR values with large residuals. These points are the same outliers as above. Other 
variables of significance have since been identified from the previous analyis include grinding 
frequency, area wear, area wear rate and rail material type. It also shows that the data may be 
further seperated with respect to rail material type to improve the regression correlations. The same 
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analysis will also need to consider operational and remaining track geometry variables for any 
significant dependence and determine any further seperation necessary. 
Conclusion 
For the railway system analysed, the individual relationships were defined intuitively and then 
tested using regression analysis with the available data. This has led to the classification of 
significance amongst the variables.  

Splitting the analysis between the east and west tracks with different side wear rate behaviour 
was a significant step in the data analysis. The split resulted in a wide range of correlation 
significance across the variables. Variables of note include side wear, curve radius, top and 
superelevation and to a lesser extent braking and speed as depicted in Table 5.   

Further splitting of the data where there are distinct sub-populations in the scatter plots that are 
influenced by other sub-variables helped improve the regression accuracy and exposed any multi-
collinearity between variables. An example was the impact of grinding frequency and rail material 
type (HH and THH) on the dependence of SWR on SW for the east track. 

The intent is that each variable is split into a maximum of three distinct ranges to limit the 
number of regression combinations that would need to be calculated but simultaneously enabling 
the application of simpler polynomial functions to the multiple non-linear regression method. 
There is a risk that the approach is data pre-processing biased, reducing the flexibility of the 
machine-learning model to process raw data. Alternatively, these steps can be automated or a 
possible trade off developed with fewer but more complex regressions.  

Multiple non-linear regression using Python Scipy curve fit optimisation method with a least 
squares optimisation function will be explored [18]. With remaining variables being analysed 
initially at a single time-stamp due to limited instances of different time-stamp data for track wear, 
the bogie fleet will be represented by the mean and standard deviation of the fleet-wide FD relevant 
to the current time-stamp. Multiple time-stamp data will subsequently introduce bogie fleet 
performance as a variable in the analysis. 

The data analysed is not exhaustive and more variables may likely be included once the initial 
multiple regression is completed. These include mileage since last wheel turn and wheel 
hollowing.   
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