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Abstract. Human performance monitoring in complex operational environments calls for sensing 
solutions that measure human physiology as well as human interactions with their surroundings. 
Recent advances in multimodal sensing have led to the development of intelligent environments 
that analyze human activities with high granularity. One of the greatest challenges is to unify 
multiple discrete sensing systems through synchronization and integration of multimodal data 
streams. This paper describes an intelligent environment that consolidates wearable skin-strain 
sensors for physiological monitoring; geophones and microphones to record ambient vibrations 
and sounds; and video cameras to visually observe human activities. We show proof-of-concept 
functionality by using the system to differentiate walking effort in human subjects. First, the work 
shows the alignment of wearable and ambient sensor time-history records. Then, data features are 
extracted and correlated to walking speed using three sensor modalities. Finally, feature-level 
analysis is done to associate the data features with the perceived walking exertion for each subject.  
Introduction 
Wearable devices that measure physiological signals such as heart rate, skin temperature, 
electrodermal activity (EDA), and electrocardiogram (ECG) are increasing in popularity. Wrist-
worn devices offer satisfactory monitoring capabilities when an overall metric of well-being is 
desired, for example, fitness tracking in sports applications [1], fatigue monitoring of construction 
workers [2], and performance evaluation of military populations [3]. However, physiological 
signals provide only limited information about the activities or surroundings of the person wearing 
the device. When perception of the activities in an environment takes precedent over physiological 
monitoring, one may instead embed sensors into the environment itself: so-called intelligent spaces 
or environments [4, 5]. These intelligent environments aim to understand what happens within 
using visual, depth, and motion sensors. Relatively less work has attempted to combine the 
paradigms of wearable and ambient sensing to monitor human activity and performance at a fine-
grained level. Such unified sensing solutions would benefit team operations where there is a clear 
interplay between environmental conditions and personal well-being (e.g., military operations, 
construction, and industrial operations). 

Intelligent environments with different sensor types face the challenge of integrating multiple 
heterogeneous data sources to create unified analyses of human performance. In general, wearable 
and ambient sensors are not time-synchronized. Multimodal unification is commonly achieved 
using a feature-level data fusion approach. In contrast to raw data fusion where different sensor 
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records are combined on a sample-by-sample basis, feature-level fusion requires only rough 
alignment since data features are extracted from the raw data before being combined into feature 
vectors [6]. 

In this paper, an intelligent environment is proposed to consolidate ambient sensing with 
wearable sensing for the purpose of human performance monitoring. The ambient sensors 
integrated into the environment are video cameras, geophones, and microphones. The wearable 
sensors are graphene “motion tape” skin-strain sensors [7] capable of monitoring muscle 
engagement and respiration [8]. The system is used in a validation case study to characterize 
perceived walking effort (i.e., pace). Two volunteers are instructed to walk at different speeds 
(which correlate to subject exertion effort) ranging from slow to fast while being monitored by the 
multisensory intelligent environment. From the video cameras, computer vision techniques are 
employed to estimate the subject walking velocity. The geophones, which measure ground 
vibrations to reveal footstep impacts, are used to compute subject step rates. Motion tape sensors 
mounted on the chests of subjects are used as respiration monitors where sensor signals contain 
information on the rate and duration of breaths. The features from the three different sensing 
modalities are then combined to associate each trial with the perceived walking effort. The results 
inspire future human subject monitoring experiments aimed at activity detection and quantification 
of physical exertion through unified wearable and ambient sensing.   
System Hardware 
Wearable sensors: motion tape is a new type of skin-strain sensor manufactured by spray-coating 
athletic kinesiology tape with a graphene nanosheet to give it piezoresistive properties [7]. This 
study uses motion tape placed on a chest band to monitor breathing (Fig. 1a). The manufacturing 
process permits flexible shapes and sizes for the sensor, which results in a varying resistance range 
for each sensor.  The sensors connect to a custom-designed wearable data acquisition node which 
keeps time based on its internal oscillator but synchronizes across nodes by connecting them to a 
base-station computer at the start of the experiment. Motion tape data is acquired at a sampling 
frequency of 20 Hz.  

Ambient sensors: geophones and microphones record ambient ground vibrations and sounds, 
respectively. Geophones are sensors that convert the velocity of motion into voltage. They can be 
used to reveal the vibration response of footstep ground impacts. The geophone of choice is a GS-
14-L9 from Geospace Technologies (Fig. 1b). Raw geophone signals are passed through a 10-150 
Hz band-pass filter for anti-aliasing and a 2000 times amplification to improve the signal strength 
prior to analog-to-digital conversion. The microphone is an omnidirectional micro-
electromechanical systems (MEMS) microphone from STMicroelectronics (Fig. 1c). It is small 
enough to integrate into printed circuit boards. It features a flat, extended frequency response up 
to 80 kHz for recording sounds through the ultrasound range. Raw audio signals are passed through 
a 28 Hz–78.5 kHz band-pass filter and onboard amplification of 360 times. All geophones and 
microphones are sampled at 100 kHz; this high rate is intended to take advantage of the ultrasound 
range of the microphones. A National Instruments PXI modular data acquisition system (DAQ) is 

 

  

 

(a) Motion Tape (b) GS-14-L9 Geophone (c) IMP23ABSU Microphone (d) GW5037IP Camera 
 

Figure 1: Overview of sensors used as part of the intelligent environment. 
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used for data collection.  The DAQ synchronizes the geophones and microphones using its real-
time operating system. Video of the environment and subjects is recorded using a standard 1080p 
IP camera (Fig. 1d) using a 24 frames per second frame capture rate. Video footage is streamed to 
a base station computer using Real Time Streaming Protocol (RTSP) and backed up to a Network 
Video Recorder (NVR). 

In summary, four sensor types (motion tape, geophone, microphone, camera) and three different 
data acquisition platforms are utilized to create an intelligent environment with elements of both 
physiological monitoring and ambient environmental sensing. Each DAQ records a UTC 
timestamp to ensure system-wide synchronization. It is assumed that the timestamp labels are 
accurate down to the second. Post-processing alignment of multimodal sensor feeds from the three 
DAQ platforms begins by extracting the starting timestamp of each DAQ record and shifting time 
histories relative to one another to get sub-second resolution. Alignment is manually verified by 
observing prominent signal features corresponding to impulsive events like subject stomping, 
clapping, or running which are visible in all sensors time histories. 
Experiment 
The sensing system is implemented in a validation study at Mcity [9], an outdoor smart city 
laboratory at the University of Michigan in Ann Arbor. The laboratory’s open outdoor space and 
information technology (IT) infrastructure enable comprehensive human subject tests. In this 
study, the focus is on single-person walking tests with two different subjects as a case-study to 
demonstrate the integration of wearable and ambient sensors. Subject 1 is asked to walk with two 
different walking efforts: “slow” pace in Test 1, which is close to a natural walking pace, and 
“moderate” pace in Test 2, which is brisk but not jogging. Subject 2 is asked to walk with three 
different efforts: “slow” pace in Test 1, “moderate” pace in Test 2, and “jogging” pace in Test 3, 
where moments of the stride have both feet off the ground. The trajectories of the subjects are 
visualized in Fig. 2. It is noted that future holistic testing could recruit a larger number of subjects 
and use a documented effort scale such as Borg’s Rating of Perceived Exertion (RPE) [10], which 
has widely been used to rank the difficulty of tasks in other physiological studies.  

The goal of the experiment is to determine the walking effort in both subjects by unifying data 
features from the wearable motion tape sensors with features from the ambient geophone and 
visual sensors. In this specific work, the microphones are primarily used to assist with data 
alignment. The alignment of all sensors is illustrated in Fig. 3, taken from Subject 1, Test 2. Several 
important physiological and activity features appear in the data. The top two data streams show 
the walker’s (x, y) coordinates, computed using computer vision techniques from the video feed 
(see section Methodology for more details). The next four data streams come from the geophones 
which reveal transient oscillations for each footstep. As the walker approaches then leaves the 
vicinity of each geophone, the envelope of the vibrations increases then decreases in amplitude 
correspondingly. The amplitude swells first at Geophone 1 then 2, 3, and 4, indicating that the 
subject is walking counterclockwise. The data from the motion tape sensor on the subject’s chest 
clearly shows peaks for each inhale occurring at approximately once every two seconds. The 
motion tapes on the left and right sides of the subject’s abdomen also reflect walking motion. The 
frequency of peaks in each abdominal record is approximately half of the step rate (visible in the 
geophone data). Each time the left leg steps forward, a peak in the left abdomen sensor occurs, and 
vice-versa for the right abdomen. The sum of the peaks from the left abdomen and right abdomen 
(20 peaks each) is equal to the number of footsteps visible in the geophone feeds (40 oscillations). 
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Methodology 
Motion tape: using the chest-worn motion tape sensors, two data features are computed: subject 
respiration rate, measured in breaths per second, and normalized signal power. The respiration rate 
is computed as the frequency corresponding to the peak of the motion tape data in the frequency 
domain. The fast Fourier transform (FFT) algorithm [11] is used to compute the discrete Fourier 
transform (DFT) of the data. Although the breathing rate is generally expected to increase with 
physical effort, it is also influenced by the rhythm of the physical activity itself. Historical studies 
have shown the entrainment of breathing rate with the rhythm of motion [12], which is not rigidly 
tied to the exercise intensity. For this reason, an additional signal power feature is computed which 
aims to account for the intensity of breaths. The data is pre-processed using a digital low-pass filter 
with a 2 Hz cutoff frequency to isolate breathing motion. The signal is normalized to have 
maximum and minimum values of +1 and a mean of zero. Then, the signal power 𝑃𝑃𝑥𝑥 is computed 
as the signal energy per unit time: 𝑃𝑃𝑥𝑥 = 1

𝑁𝑁
∑  |𝑥𝑥(𝑛𝑛)|2𝑁𝑁−1
𝑛𝑛=0  for a discrete signal 𝑥𝑥(𝑛𝑛) of length 𝑁𝑁. An 

illustration of the signal power feature is given in Fig. 4, where the more profound peaks in the 
jogging signal result in higher signal power than the slow walking signal. 

Geophones: the geophones are used to compute a step rate, in steps per second, by counting 
the number of footstep events per unit of time. The event detection algorithm first implemented by 
Pan et al. [13] is used with minor modifications. The algorithm intakes windowed vibration time 
series data and determines whether the current window represents ambient vibration or a footstep 
event. First, the acquired discrete signal 𝑥𝑥(𝑛𝑛) of length 𝑁𝑁  is windowed every 0.1 seconds in 
increments of 20 msec. Next, a signal energy feature Ex = ∑  |𝑥𝑥(𝑛𝑛)|2𝑁𝑁−1

𝑛𝑛=0  is computed. The signal 

 
(a) Subject 1 

 

(b) Subject 2 
 

Figure 2: Visualization of routes taken by Subject 1 and Subject 2 at Mcity. Red squares 
numbered 1 through 4 represent the locations of the sensor boxes containing co-located 

microphones and geophones. The coordinate system is chosen by the authors with the origin 
at sensor box number 3. The video camera (not shown) is located at (𝑥𝑥,𝑦𝑦) = 

(−484, 28.2) cm. 
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Figure 3: Alignment of multimodal sensor data. Subject 1 location (top two plots), 

geophones (next four plots), microphones (middle four plots), and motion tape sensors 
(bottom five plots). 

 

 
Figure 4: Signal power feature on normalized motion tape chest data, different efforts. 
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energy is compared to a Gaussian noise model X ∼  N(μ,σ2) whose parameters are continuously 
updated based on non-footstep-event data. If the current window's energy feature exceeds three 
standard deviations (3σ) above the mean energy of the noise (μ), then the window is labeled a 
potential step event. The potential step event is re-labeled as a confirmed step event if the next 
window also exceeds the μ + 3σ threshold, and if at least two out of the four geophones label it as 
such. Finally, consecutive windows labeled as footstep events are merged. Visualization of the 
algorithm is shown in Fig. 5 where shaded windows of the plot indicate footstep events. The step 
rate is the number of steps divided by the duration of the record. Also shown in Fig. 5 is the short-
time Fourier transform (STFT), showing that footstep impulses registered by the geophones 
primarily consist of the frequencies below 200 Hz after signal conditioning. 

Video: The video camera is used to estimate an average walking velocity of the person in the 
intelligent environment (limited to a single person in this study). The YOLO object detector [14] 
detects the person in each video frame and draws a bounding box surrounding the subject (Fig. 
6a). It is assumed that the detected person is standing on the ground, which represents a height 
coordinate of 𝑧𝑧 = 0 in the world coordinate system. Successive coordinate transformations as 
described by the pinhole camera model (Fig. 6b) are used to convert from pixel coordinates of the 
base of the YOLO bounding box to 3D coordinates in a world system. The inverse projection is 
made tractable by the 𝑧𝑧 = 0 assumption. Since location estimates using this method can jitter 
frame-by-frame, a 12-point (0.5 seconds) simple moving average (SMA) is applied to the 
coordinates extracted. Once the coordinates of the monitored subject are computed for each video 
frame, the instantaneous walking velocity is estimated as the change in Euclidean distance from 
one frame to the next divided by the time between video frames. The data feature is the average 
walking velocity over all video frames in each test. 

 
(a) Person detection using YOLO 

 
(b) Pinhole camera model for 3D reconstruction [15] 
 

Figure 6: Person localization using computer vision from video feed. 

 
 

Figure 5: Top: Geophone signal with footstep events in shaded windows, computed using 
signal energy method. Bottom: time-frequency representation of geophone signal using the 

short-time Fourier transform (STFT). 
 

Ground 
contact 
(𝑧𝑧 = 0) 
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Results 
Fig. 7 shows the four data features computed across tests for the two subjects walking with 
differing levels of exertion. Step rate and walking speed show similar patterns in line with 
expectations: both subjects exhibit faster step rates and higher average walking speed when told 
to walk with higher effort. Individual differences are also evident between the two subjects. 
Subject 1 walking with moderate effort uses a step pace similar to Subject 2’s jogging effort (Fig. 
7a), however the speed is not as fast (Fig. 7b), indicating shorter stride length. Subject 1 breathes 
faster walking with moderate speed than slow speed (Fig. 7c). This is also true of Subject 2, but 
Subject 2 breathes more slowly while jogging than walking moderately. We attribute the reduction 
in respiration rate to entrainment with running pace. Subject 2’s jogging step rate is 2.6 
steps/second and respiration rate 0.5 breaths/second; therefore, the subject breathes approximately 
once every five steps. On the other hand, the signal power data feature for Subject 2 increases 
according to perceived effort, while that is not true for Subject 1. It appears that increased effort 
results in faster, shallower breaths by Subject 1 but slower, deeper breaths by Subject 2. The overall 
impression of the four multimodal data features agrees with subjects’ perceived walking effort. 
Step rate and walking speed show identical trends that can pick out the walking rate despite person-
specific breathing patterns. The breathing features give an understanding of the adaptations to 
breath rate and depth that subjects make with higher physical effort.  
 

 
(a) Step Rate (geophones) 

 
(b) Walking Speed (video) 

 
(c) Respiration Rate (motion tape) 

 
(d) Signal Power (motion tape) 

 
Figure 7: Walking features computed across sensor modalities. Sensor type indicated in 

parentheses. Perceived walking effort by the subject is color-coded. 
Conclusion 
This paper advances recent efforts to integrate physiological and environmental monitoring to 
create unified metrics of human performance. Using video cameras, geophones, and wearable 
motion tape skin-strain sensors, four data features related to perceived walking exertion are 
computed. The data features are shown to accurately reflect walking effort in a case study from an 
outdoor validation experiment with two volunteers. Next steps in quantifying physical effort in an 
intelligent environment could involve controlled human subject experiments where each volunteer 
is asked to perform repetitions of an activity at different RPE levels. Additional physiological 
sensors that measure heart rate and/or ECG would complement the respiration measurement by 
chest-worn motion tapes. Since the work herein shows proof of concept, the research team is 
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actively pursuing more advanced human performance monitoring tasks using the same multimodal 
sensor suite. Other tasks include localization of multiple people and detection of actions and poses. 
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