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Abstract. Railways are important ways of transportation that are used massively. This makes it 
important to create an optimized asset management model that helps in reducing its Operation and 
Maintenance (O&M) costs while maintaining the quality of service and safety. Reinforcement 
learning (RL) is an adequate model for optimizing decisions based on unrelated factors as it 
connects the decision to a final goal without understanding the problem details. Also, it allows for 
automatic policy updates without any user intervention. On the other hand, the Petri net (PN) 
model, which is a bipartite graph of transitions and places, are adequate to be combined with 
Reinforcement learning since RL actions can be directly described by the PN transitions. In 
addition, PNs are suitable for maintenance modeling since it can model heterogeneous 
information, parallel operations, and synchronization, and provide a graphical interpretation. In 
this study, the Petri net method is used with Reinforcement Learning to create a tool for modeling 
and optimizing decisions within the maintenance of railway sections while taking into account 
several factors. 
Introduction 
Railways are a climate-smart and efficient way to move people and freight deployed in most 
countries worldwide. They are easy for long-distance travel, play an important role in national 
integration, and can carry huge loads for short and long distances. Only the UK railway industry 
employs around 710,000 people and contributes £42.9 billion to the economy [1]. However, as 
reported by Network Rail, the railways‘ Operation and Maintenance (O&M) costs are expensive, 
with £7.5 billion for 2020/21 [2]. This gives vital importance to find an optimal strategy for 
performing maintenance with reduced costs while maintaining good service. 

The degradation of track geometry is subjected to much uncertainty and can be related to many 
factors, such as weather, traffic loads, and speed. Maintenance actions should be performed before 
the condition reaches a point where the asset become unfit for purpose, which may, at the best, 
result in system downtime, and, at worst, in potential safety risks. An example of catastrophic 
failure is the Potters Bar train derailment, which resulted in 7 fatalities, 76 injuries, and a 
£3,150,000 fine for Network Rail [3]. Besides, as the track geometry worsens, the probability of 
having rail faults increases [3]. These faults can result in breaks, safety issues, and speed 
restrictions if the right measures are not performed. Grinding or welding are two main actions that 
can be done to correct the rail faults, and sometimes replacing the rail can be considered depending 
on the severity of the case [3]. The track geometry can be restored by ballast maintenance 
techniques, which are tamping and stoneblowing, or by ballast renewal if the ballast state is highly 
fouled. The tamping operation causes ballast breakdown, which may result in a higher degradation 
rate and faster track settlement, and this result in the necessity to reduce the time interval between 
required tamps until it becomes no longer economical [4]. At this stage, stoneblowing, which is a 
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more expensive and slower alternative to tamping that causes less ballast breakup can be 
considered [5]. 

Several aspects should be considered when modeling the O&M of the rail including the factors 
that may affect the degradation rate including the maintenance history, the factors that may cause 
rail faults including the condition and the age of the track, the effectiveness of each maintenance 
action, the consequences of different conditions of the rail, and the costs of maintenance actions. 
Petri net (PN) are powerful for modeling O&M as they are able to account for resource availability, 
concurrency, synchronization, and heterogeneous information [6]. For this, it is chosen to create 
an asset management model for the case of the railway while taking into account different 
complexities. Then, Monte Carlo Reinforcement Learning (MCRL) is used to teach an RL agent 
through interacting with the PN model so that it reaches an optimal maintenance policy that 
reduces the O&M costs while avoiding bad consequences.  
Monte Carlo Reinforcement Learning with Petri Net Model 
The term reinforcement learning (RL) is applied to machine learning methods that reward or 
punish desired or undesired behaviors respectively. The method teaches a learning element, called 
the agent, by trial and error. The agent’s actions change the state of the environment and result in 
rewards that are used to evaluate how good that action was. The evaluation of the actions is known 
as the state-action value function and is used to find the optimal policy [7]. This study adopts the 
Monte Carlo Reinforcement learning (MCRL) method, which works by generating episodes 
following an initial random policy referred to as  𝑆𝑆0,𝐴𝐴0,𝑅𝑅1, 𝑆𝑆1,𝐴𝐴1,𝑅𝑅2, … , 𝑆𝑆𝑇𝑇−1,𝐴𝐴𝑇𝑇−1,𝑅𝑅𝑇𝑇, where 
𝑆𝑆𝑡𝑡, 𝐴𝐴𝑡𝑡, and 𝑅𝑅𝑡𝑡 are the state, action, and reward at time 𝑡𝑡 respectively, and 𝑇𝑇 is the terminating state 
of the episode. The summation of the future rewards accumulated from time step t, and discounted 
by discount rate 𝛾𝛾, is called the discount expected return, Gt and can be calculated as follows: 

𝐺𝐺𝑡𝑡 = 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑅𝑅𝑡𝑡+2 + 𝛾𝛾2𝑅𝑅𝑡𝑡+3 + ⋯ = � 𝛾𝛾𝑘𝑘−𝑡𝑡−1𝑅𝑅𝑘𝑘

𝑇𝑇

𝑘𝑘=𝑡𝑡+1

 
(1) 

Thus, a value function Q(𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡) is updated based on the expected return at time t as follows: 

𝑄𝑄(𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡) = 𝑄𝑄(𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡) + 𝛼𝛼[𝐺𝐺𝑡𝑡 − 𝑄𝑄(𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡)] (2) 

where 𝛼𝛼 ∈ [0,1] is a learning rate parameter, with 𝛼𝛼 =1 meaning that the effect of the latest update 
will be dominant. The value functions are evaluated to find the optimal policy that increases the 
long-term rewards. To do this, the actions with higher Q-values are favored to update the initial 
policy; this is also called greedy policy. A problem in the greedy policy is that it does not allow 
the agent to try actions with lower Q-values, which may be better than how they look if they are 
updated. This is known as the exploration-exploitation dilemma and can be seen in almost all RL 
methods. An alternative that solves this issue is the 𝜀𝜀-greedy strategy, where the action 𝐴𝐴𝑡𝑡 is given 
by: 

𝐴𝐴𝑡𝑡 = �𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑄𝑄
(𝑆𝑆𝑡𝑡,𝑎𝑎) 𝑤𝑤𝑤𝑤𝑡𝑡ℎ𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤𝑡𝑡𝑝𝑝(1 − 𝜀𝜀)

𝐴𝐴 ∈𝑅𝑅 𝐴𝐴(𝑠𝑠) 𝑤𝑤𝑤𝑤𝑡𝑡ℎ𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤𝑡𝑡𝑝𝑝𝜀𝜀  (3) 

with 𝜀𝜀 = [0,1] being the exploration rate parameter and 𝐴𝐴(𝑠𝑠) is the set of actions available at state 
𝑠𝑠. To ensure that all actions will be visited and updated despite their low Q-values, this method 
keeps a probability equal to 𝜀𝜀. 
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Besides, a PN is defined as a directed bipartite composed of connected transitions and places. 
Each place contain a number of tokens that define the marking of that place and the marking of all 
places defines the state of the PN. From a mathematical point of view, a PN is defined as a tuple 
𝑁𝑁 = ⟨𝑃𝑃,𝑇𝑇,𝐹𝐹,𝑊𝑊,𝑀𝑀𝑜𝑜⟩ , where 𝑃𝑃,𝑇𝑇,𝐹𝐹,𝑊𝑊,  and 𝑀𝑀𝑜𝑜  are the sets of places, transitions, arcs, arcs’ 
weights, and initial marking respectively [8]. If the number of tokens in the pre-set places of a 
transition is greater than or equal to the weights of its pre-set arcs, the transition can fire. This is 
called the firing rule and it controls the dynamics of the PN. When a transition fires it consumes 
tokens from pre-set places equal to the pre-set arcs’ weights and produces tokens in the post-set 
places equal to the post-set arcs’ weights. This causes a change in the markings, which can be 
described using the state equation defined as: 

𝑀𝑀𝑘𝑘+1 = 𝑀𝑀𝑘𝑘 + 𝐴𝐴𝑇𝑇𝑢𝑢𝑘𝑘 (4) 

where 𝑢𝑢𝑘𝑘 is the firing vector, which is a binary vector describing the firing states of the transitions, 
and 𝐴𝐴𝑇𝑇  is the incidence matrix, which represents the difference between weights of input and 
output arcs connecting places and transitions. Additional definitions are used to model the 
complexity of practical applications. For this study, timed transitions, inhibitor arcs, and reset arcs 
are used. Timed transitions takes a delay time before it fires after satisfying the firing rule, and this 
delay can be a fixed value or sampled from a stochastic distribution. The inhibitor arc, which is an 
arc with a circular ending, prevents the firing of the transition if the marking of the inhibiting place 
is more than or equal to the weight of the inhibiting arc. The reset arc, which is an arc with a filled 
circular ending, assigns the post-set place a marking equal to the weight of the reset arc. To 
combine RL with PN, an action groups, g, is defined as a group of conflicting transitions that are 
fired by RL agent after enabling they are enabled based on the RL policy. 
Case study 
A 220-yard rail section, known as poskey, with a track speed equal to 10 MPH and small concrete 
sleepers was modeled through PN, and RL was used to find the optimal maintenance schedule. 
The degradation rate of the section for each condition is sampled from a Weibull distribution 
whose parameters are related to the track speed, sleeper type, and maintenance history [3]. For a 
rail with a speed between 5-60 MPH and small concrete sleepers, the Weibull’s shape and scale 
parameters, (𝛽𝛽, 𝜂𝜂) , are: (5.64e-1,2.13e-4), (1.3,1.7e-4), (9.73e-1,1.80e-4),  (1.77,1.47e-4), 
(4.3,7.97e-5), (1.82,1.56e-4), (1.34,1.66e-4), and (1.34,1.66) after renewal, 1st tamp, 2nd or 3rd 
tamps, 4th or 5th tamps, 6th tamp, 7th tamp, 1st stoneblowing, and 2nd stoneblowing respectively [3]. 
The degradation rate is given in m/Equivalent Million Gross Tonnage (m/EMGT), so to calculate 
the increase in SD, the following formula is used: 

𝑆𝑆𝑆𝑆2 = 𝑆𝑆𝑆𝑆1 + 𝑆𝑆𝑅𝑅(𝑈𝑈2 − 𝑈𝑈1) (5) 

where 𝑆𝑆𝑆𝑆, 𝑆𝑆𝑅𝑅, and 𝑈𝑈 represent the standard deviation, the degradation rate, and the usage of the 
rail respectively, and subscripts 2 and 1 represent the next and the current states. The rate of having 
rail faults for one poskey was related to the deterioration level of the rail [3]. Stacked fault rates 
are available for the 12 groups of rail fault types: squat, tache ovale, bolt hole, weld, other, rolling 
contact fatigue (RCF), wheel burn, lipping, side wear, headwear, corrugation, unknown (all). 
These rates can be calculated using the following formula: 

𝐹𝐹𝑅𝑅[𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 𝐸𝐸𝑀𝑀𝐺𝐺𝑇𝑇⁄ ] = 𝐴𝐴 ∙ 𝑆𝑆�́�𝑆1 + 𝐵𝐵 ∙ 𝑆𝑆�́�𝑆2 + 𝐶𝐶 ∙ 𝑆𝑆�́�𝑆1 + 𝑆𝑆 ∙ 5.3 (6) 
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where 𝑆𝑆�́�𝑆 is the average standard deviation, and parameters A, B, C, and D are given in Table 1 
for each faults group [3]. Based on the stacked rates, the probability of having a particular fault in 
a certain period can be modeled as follows: 

• Calculate the usage (𝑈𝑈2 − 𝑈𝑈1)[EMGT] and 𝑆𝑆�́�𝑆 [mm] over the modeled period. 
• Generate 𝑅𝑅, a random number between [0,1], ⇒ 𝑟𝑟 = 𝑅𝑅 �𝐿𝐿 ∙ (𝑈𝑈2 − 𝑈𝑈1)�⁄ . 
• If 𝑟𝑟 < 𝐹𝐹𝑅𝑅12: (there is a probability of having one of the faults)  

 For i=1,…11: 
o If 𝑟𝑟 < 𝐹𝐹𝑅𝑅𝑖𝑖: there is a probability of having fault i, exit loop. 

• Else: there is no probability of having any of the faults 
Table 1 Parameters of stacked rail fault rate against track vertical geometry polynomial fits [3]. 
  1-squat 2-tache ovale 3-bolt hole 4-weld 5-other 6-RCF 
A 7.64E-05 7.85E-05 6.90E-05 9.38E-05 1.18E-04 1.13E-04 
B -6.45E-04 -6.55E-04 -5.45E-04 -7.96E-04 -6.94E-04 -5.46E-04 
C 3.44E-03 3.73E-03 3.56E-03 4.85E-03 5.22E-03 5.07E-03 
D 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
 7-wheel burn 8-lipping 9-side wear 10-headwear 11-corrugation 12-unknown 
A 1.12E-04 7.34E-05 1.66E-04 1.61E-04 1.60E-04 1.70E-04 
B -3.87E-04 1.31E-04 -3.48E-04 -1.98E-04 -1.92E-04 -2.31E-04 
C 4.93E-03 3.87E-03 4.61E-03 4.28E-03 4.27E-03 4.33E-03 
D 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Now, several maintenance actions can be done for each of the faults, which are given as stacked 
probabilities in Table 2. Other than the faults, the deterioration of the rail can have a bad 
consequences including speed restriction and accidents. Three maintenance actions can be done to 
fix deteriorated rails: tamping, stoneblowing, and renewal. Each of the actions has a maintenance 
effectiveness that is described as the reduction of the poskey’s SD. This study adopts the Network 
Rail (NR) maintenance effectiveness model given as [9]: 

𝑆𝑆𝑆𝑆2 = 𝐴𝐴𝐺𝐺 + (𝑆𝑆𝑆𝑆1 ∙ 𝐵𝐵𝐺𝐺) (7) 

where 𝐴𝐴𝐺𝐺  and 𝐵𝐵𝐺𝐺 for a track speed less than 20 MPH is 0.365 and 0.754 respectively for tamping 
and 0.88 and 0.577 respectively for stoneblowing. It is assumed that the renewal return the SD of 
the poskey to 0.  

A PN model shown in Figure 1 was created to model the degradation, inspection, and 
maintenance of the poskey. Transition 𝑡𝑡1 represents the periodic inspection that is performed every 
half a year. It is assumed that the super-Red condition can be revealed visually since it causes 
noise, vibration, and great fluctuation in the poskey, and this is modeled by transition 𝑡𝑡7. Place 𝑝𝑝1 
represents that a change occurred in the poskey condition, and action is required. This enables the 
transitions in the action group 𝑟𝑟1, which are 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4, and 𝑡𝑡5 and they represent the no-action, 
renewal, tamping, and stoneblowing decisions respectively. Accordingly, RL agent chooses an 
action using the followed policy and based on the RL-state. Choosing any of the available repair 
types marks 𝑝𝑝2, which represents that logistic preparation starts, then after this period ends, 𝑡𝑡6 is 
fired to represent the maintenance of the poskey. An additional node type called function is defined 
in this PN model. If a function is connected from a transition, it runs when the transition fires; 
otherwise, it runs every time the state of the PN changes. Function 𝑓𝑓1 updates the condition and 
the SD of the poskey and includes the faults rate and degradation rate models. Function 𝑓𝑓2 
calculates the time needed of the poskey to change to super-Red condition and assigns a delay for 
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transition 𝑡𝑡7 accordingly. Function 𝑓𝑓3 checks the available actions at the current condition (the 
tamping action can’t occur after the stoneblowing). Function 𝑓𝑓4 updates the maintenance history 
of the poskey according to the chosen action. Function 𝑓𝑓5 calculates the logistic time based on the 
condition and assigns the delay of 𝑡𝑡6 accordingly, and finally, function 𝑓𝑓6 updates the SD of the 
poskey based on the maintenance effectiveness model and updates the degradation rate based on 
the degradation model. 

 
Figure 1 PN model for the degradation and maintenance of rail poskey. 

The RL rewards were assigned in terms of the maintenance costs and the consequences of rail 
bad condition. For a rail with a track speed between 5 and 20 MPH, the condition is considered 
super-red, poor, good, very good, and excellent for SD more than 9900, 8300, 7400, 5200, and 0 
[𝜇𝜇𝑟𝑟] respectively [9]. The RL environment is defined to include the deterioration level of the 
vertical geometry, the age, and the maintenance history of the rail. The deterioration level is 
assigned by discretizing the SD between values 5200 and 9900 to 10 levels, while the aging in 
considered by discretizing the age into intervals of 2 years each. A learning process with 400’000 
episodes was considered to find the optimal maintenance strategy that reduces the Operation and 
Maintenance (O&M) costs while elongating the life of the rail. An episode terminates when a 
renewal action is chosen or when the life of the rail reaches 200 years. The RL rewards for a state-
action pair were calculated as the summation of the O&M costs coming after that state divided by 
the time from taking the action until the end of the episode. If the rewards are not normalized by 
the time, the agent will choose the action with the minimal cost without considering the effect on 
the life of the rail, and this leads to increasing the costs per time. The O&M costs include the 
vertical geometry maintenance costs which are assigned as 1000, 2000, and 20’000 units for the 
tamping, stoneblowing, and renewal respectively, the faults maintenance costs which are assigned 
as 120, 100, and 80 units for the rerail, weld, and grind actions respectively, and the consequences 
of being in a super-red condition which is assigned as 1 unit per minute of service. 

Table 2 Stacked probabilities for each maintenance action according to fault type [3]. 

  squat tache ovale bolt hole weld other RCF 
Rerail 0.328 0.722 0.9 0.519 0.641 0.508 
Weld 0.954 0.963 0.919 0.904 0.918 0.786 
Grind or other 1 1 1 1 1 1 
 wheel burn Lipping side wear headwear corrugation unknown 
Rerail 0.267 0.029 0.044 0.213 0.706 0.464 
Weld 0.874 0.134 0.338 0.752 0.765 0.63 
Grind or other 1 1 1 1 1 1 

Results 
Figure 2 shows the increase of the total rewards of each episode as a function of episode number. 
It can be noted that the curve has reached stability by the end of the learning process, which results 
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in a decrease in the annual O&M costs. The learning process resulted in finding the optimal action 
for 3878 different states. The effect of the final policy can be seen in Figure 3 which shows the 𝑆𝑆𝑆𝑆 
and maintenance history for 20 random poskeys as a function of time. The figure shows that once 
a tamping action is taken, the frequency of maintenance actions increases. This is because each 
tamping operation causes ballast breakup of as much as 20 EMGT of traffic [10], resulting in 
fouling, faster settlement of subgrade, and faster degradation rate [4, 5]. For some of the samples, 
tamping was not considered at all, and this may be due to the advantages of stoneblowing over 
tamping including the maintenance effectiveness and degradation rate. The resulting policy takes 
into account various factors including the relation between the 𝑆𝑆𝑆𝑆 and the probability of having 
faults, the costs of maintenance actions, the consequences of being in a bad condition, the effect 
of each action on the life of the poskey, the maintenance history, and the age of the poksey. For 
this, the decisions at the same vertical geometry conditions are not the same for all poskeys. This 
shows the importance of considering the age of the rail and the maintenance history in the RL 
environment. 

 
Figure 2 Total rewards as a function of episode number 

 
Figure 3 SD and maintenance history of 20 random Poskey samples as a function of time 
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Conclusion 
A PN asset management model was created and optimized through RL for railway sections. 
Different factors are considered in the created model including the effectiveness of the 
maintenance, the effect of the rail condition on the probability of having faults, the factors 
influencing the degradation rate, the consequences of bad rail condition, and costs of the 
maintenance actions. The RL rewards are all expressed in monetary terms, and RL agent was left 
to interact with the PN model, which reached at the end an optimized maintenance strategy that 
can reduce the O&M costs while maintaining the safety and quality of service. Additional work 
can be done by considering a full track with different sections that has different properties when 
creating a full asset management model.  
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