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Abstract. The increasing demand for renewable energy has led to the development of several wind 
energy projects. A rising concern is the aging of these structures that must keep their serviceability 
and integrity for a long lifetime. That is why recent studies have focused on monitoring systems 
for data extraction based on accelerometers, fiber optic sensors, and piezoelectric sensors among 
many other sensing technologies. One of the most promising approaches is the use of fiber-Bragg-
grating-based systems taking advantage of their proven benefits such as electromagnetic 
immunity, low size and weight, and ability to embed numerous sensors in a single optical fiber 
line. However, most of the reported studies have addressed the operational assessment of the 
acquisition systems without further deepening the exploitation of the acquired data for structural 
health monitoring purposes. This work aims to data exploitation of strain measurements acquired 
by simulated fiber Bragg gratings (FBG) for damage identification in wind turbine blades made of 
composite materials. A FEM model of a 2.5-meter-long wind turbine blade with 40 virtual FBGs 
strain sensors was used to obtain strain data under normal operational conditions. Then, strain 
measurements were calculated after defining several damages to the blade. Once the data were 
obtained, different data processing techniques following the pattern recognition paradigm were 
tested comparing their performance in terms of accuracy. The results will contribute to designing 
real-time automatic damage identification systems using FBGs strain sensors for composite wind 
turbine blades. 
Introduction 
Wind turbine blades are preponderant in wind turbine performance. However, blades are prone to 
different types of damage which can generate imbalances affecting power generation efficiency, 
and operational and maintenance costs. 1 GW of installed generation capacity could cost between 
0.5 to 1 USD million. In extreme cases, such damages can even cause catastrophic failures of 
turbines themselves or adjacent ones. In the worst scenario, a catastrophic failure can cause a safety 
hazard to persons.  Therefore, early damage detection in wind turbine blades is of great importance 
to optimize maintenance planning and reduce operational costs while increasing safety.  

Structural Health Monitoring (SHM) consists of a variety of strategies for early damage 
identification. These strategies can include machine learning algorithms which are used with the 
aim of “constructing” a baseline from a pristine structural element under regular operational 
conditions based on features related to data gathered from several types of sensors. Based on this 
baseline, newly gathered information can be “compared” to the baseline looking for outliers related 
to damage. This methodology based on physical measurements has been called data-driven SHM. 
In this way, SHM can be considered as the evolution of non-destructive testing, due to SHM 
techniques that can perform condition monitoring for diagnosis which can be performed online 
(real-time) or offline. 
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SHM tasks include signal processing from a structural system under dynamic loads, commonly 
using a variety of sensors embedded or placed on the structure for measuring physical variables 
such as strain, displacements, guided waves, and acceleration among others to identify damage 
occurrence. The availability of a record suggests that the user should make a most accurate and 
precise diagnosis of the structure, this for sure, could change the way that maintenance is made. 
The most common method of diagnosis as previously mentioned includes an unusual signal and 
prognosis of a section of interest.    

There is reported much academic research related to damage detection methodologies, mainly 
based on guided waves, acoustic emissions, machine vision, thermography, vibration analysis, 
strain measurements, etc. [1]. However, according to Du et al [2], who published an exhaustive 
and comprehensive review of damage detection techniques for wind turbine blades, the discussion 
on fault indicators and research prospects of damage detection of wind turbine blades is still an 
open topic in the related research field. 

This paper presents a data-driven general methodology for wind turbine blade damage detection 
based on strain field pattern recognition. First, the methodology is described in detail in the first 
section, in the second section experimental and numerical setup is described, results and discussion 
are presented in the third section and finally, a summary is presented in the fourth section.  
Damage detection methodology 
The fundamental premise behind strain mapping techniques is that damage occurrence produces a 
change in the local and global stiffness of a structure due mostly to damages producing an inertia 
variation promoted by discontinuities of several kinds of damages (i.e. holes, cracks, delamination, 
inclusions, etc.). Therefore, unitary strain changes in the near field of damage, and such changes 
can be detected through discrete or distributed strain measurements gathered using several types 
of sensors. According to Saint-Venant’s principle, such slight changes in the strain field near to 
damage fade away at distances equivalent to a couple of times the damage size. In this way, it has 
been believed that damage detection is only possible if sensors are located very close to damage. 
However, it has been demonstrated that this is not necessarily true. By using adequate pattern 
recognition techniques global and local stiffness changes can be detected in sparse sensors arrays, 
for instance, in wind turbine blades it is possible to detect delamination of typical size for a big 
wind turbine blade by using strain sensors (FBGs) separated more than 1 meter among them [3].    

An additional issue with the arguments mentioned before lies in the fact that not only damages 
can promote changes in the strain field in a structure, particularly in a wind turbine blade. The 
change in the operational conditions also promotes changes in the strain field. Think for example 
the pitch angle and the resultant aerodynamic forces in a wind turbine blade. For example, at fixed 
angular speed, as the incident wind speed increases the pitch angle of the wind turbine blade is 
increased and the resultant aerodynamic force changes in both direction and magnitude. In this 
way, the sectional inertia of the section changes, and therefore, the global stiffness changes. This 
change can be misconstrued as damage by many machine learning algorithms if these do not 
include information related to the operational conditions (wind speed, pitch angle, angular speed, 
etc.) that allows building different models (strain field models), each one representing a particular 
operational condition which can be used in a subsequent stage to compare against uncertain 
condition and discern if a change in the strain field has been promoted by damage occurrence, that 
is, uncoupling the changes in strain field promoted by damage from such promoted by operational 
conditions. This process has been called Optimal Baseline Selection (OBS) and is shown in Figure 
1. The OBS can be performed in a “manual” way if operational conditions can be extracted from 
the wind turbine controller (i.e., pitch angle, angular speed, etc.) or can be extracted in an automatic 
fashion using clustering techniques when the operational conditions are not available.  

As can be seen in Figure 1, the general proposed methodology consists of two stages. In stage 
A, a baseline is built for different operational conditions representing a specific strain field pattern. 
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This is done automatically by using a clustering technique of two-level clustering based on Self 
Organizing Maps (SOM) and a DBSCAN-based method. In a subsequent step, models are built 
for each baseline by using different dimensionality reduction techniques. In stage B, data for 
unknown operation conditions are classified according to their major similarities with baselines 
previously build in stage A, through a process we call “inverse OBS” and in a subsequent step, 
data is projected into the associated baseline model. Damage indices and detection thresholds are 
defined to perform the damage detection process. 
 

  
Figure 1. Scheme of data-driven based strain field damage detection methodology. 

FA+GA-DBSCAN model 
The use of unsupervised pattern recognition algorithms can be used for exploratory analysis to 
obtain specific clusters of data i.e., operational conditions. The model aims to unfold operational 
conditions from a randomized environment. The pattern recognition algorithm used to define these 
specific models is a modified version of Density-Based Spatial Clustering of Applications with 
Noise or DBSCAN. 

DBSCAN has two particularities, the first is the fact that the algorithm is not automatized, it 
employs two parameters to define a cluster in a two-dimensional space, Eps which is related to a 
particular radius and MinPts can be considered as the minimum number of reachable elements in 
a cluster. A Genetic Algorithm GA is selected to define automatically DBSCAN parameters. The 
second is the computational cost of clustering, which is reduced when the dataset is evaluated in a 
two-dimensional space, therefore a two-dimensional projection using the Factor Analysis 
technique is applied to datasets before clustering, this methodology was defined as FA-DBSCAN. 
The previous also allows the identification of operational conditions in a simple visible way which 
is a two-dimensional representation of operational conditions.  

The Factor Analysis model can be represented as 𝑥𝑥𝑖𝑖 = Λ𝑓𝑓 + 𝑒𝑒, where 𝑥𝑥𝑖𝑖 represents the original 
variables, Λ the factor loadings, 𝑓𝑓 common factors and 𝑒𝑒 the specific errors. Factor Analysis is 
also used to realize an outlier detection by a projection of new information to the generated 
baseline. The novel detection mechanism is an index which is represented as follows: 𝐹𝐹𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑖𝑖 × [𝐼𝐼𝑖𝑖×𝑖𝑖 − (Λ × Λ′)] × 𝑥𝑥𝑖𝑖, where 𝐼𝐼𝑖𝑖×𝑖𝑖 is the identity matrix.  
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SOM-PCA model 
One of the most successful clustering techniques is the SOM. In this work, a SOM-based technique 
is proposed to discriminate operational conditions automatically without any intervention of the 
user. SOM is considered an unsupervised method that allows the conversationally of nonlinear 
relationships among high dimensional data into simple relationships in an interpretable low 
dimensional space.  

It is possible to use (learn) the information obtained with SOM to partition data in a discrete 
way (which is one of the main SOM’s shortcomings). This algorithm has been called the two-level 
clustering technique.  

On the other hand, another dimensional reduction technique used as a modeler (like Factor 
Analysis) is PCA. PCA is used to reduce complex data to a smaller dimension and to reveal simpler 
patterns in data hidden by noise, redundancies, or data complexity. The model is constructed 
through the linear transformation 𝑇𝑇 = 𝑋𝑋�𝑃𝑃𝑟𝑟, where 𝑋𝑋� represents standardized data, 𝑃𝑃𝑟𝑟 the first 𝑟𝑟 
retained principal components and 𝑇𝑇 the scores. From this projection, it is possible to calculate 
different damage indices and thresholds. Perhaps one of the most successful is the so-called 𝑄𝑄-
index which denotes the difference between an observation and its projection into a PCA model. 
The index is given by 𝑄𝑄 = 𝑋𝑋�(𝐼𝐼 − 𝑃𝑃𝑟𝑟𝑃𝑃𝑟𝑟𝑇𝑇)𝑋𝑋�𝑇𝑇.  

A detection threshold for 𝑄𝑄-index can be defined as � 𝜐𝜐
2𝜛𝜛
�𝜒𝜒2𝜛𝜛2𝜐𝜐−1

2 (𝛼𝛼). Where 𝜒𝜒2𝜛𝜛2𝜐𝜐−1
2  is the 

upper 100𝛼𝛼-th percentile of a chi-square distribution with 2𝜛𝜛2𝜐𝜐−1 degrees of freedom and at a 
significance level 𝛼𝛼, with 𝜛𝜛 and 𝜐𝜐 equal to the mean and variance of the 𝑄𝑄-index respectively.  
Numerical setup 
A finite element model was made in ANSYS APDL and was cross-validated with experimental 
and numerical data obtained from a previous work made by Murray et al [4]. 

A mesh convergence study was made to select the appropriate mesh to use in the FE model for 
APDL. Two different element types were considered, the 4 node Shell 181 element and the 8 node 
Shell 281 element. The study showed that both elements can get results like those obtained by 
Murray et al with a margin of error of approximately 5%. 

The FEM study was performed using a 2.5-meter-long wind turbine blade with a 40-thousand-
element mesh to get good results according to the convergence study and the software 
configuration was established to simulate the blade at a macroscopic scale. So, several initial 
conditions were set to simulate the real blade operation, like:  

• Rotational velocity of 40 rad/s, which represents the maximum operating velocity of the 
wind turbine blade. 

• The blade base attachment was set rigid to fix the blade in the rotational disk. 
• Blade lift was set as a pressure profile based on previous CFD analysis (See Figure 2). 
• Drag force also was included in the FEM study with a force all over the body of 108.77 N. 

The simulations were performed for 10 pitch angles starting from -5° to 40° with a 5° interval. 
These values are within the optimal and real blade operation. 

 
Figure 2. Wind turbine blade pressure profile. 
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The value 0.66275 in the previous figure refers to where the mean aerodynamic chord (MAC) is. 
Regarding the virtual sensors, ten of them were located along the longitudinal axis of the blade at 
the extrados surface, approximately at 10% of MAC from the leading edge and trailing edge (See 
Figure 3 and Figure 4). At each sensor location, three strains of the blade were measured in their 
coordinate axis, the longitudinal (Y), transverse (X), and off the plane (Z), replicating a strain 
rosette. 

 
Figure 3. Strain sensor’s location at intrados surface. 

 

 
Figure 4. Strain sensor’s location at extrados surface. 

Each dot in Figure 3 and 4 represents a strain rosette, so in total there are 40 sensors and 120 strain 
values for each pitch angle. Sensors are distributed equally at both extrados and intrados surfaces 
and placed along the longitudinal axis; the tip zone was excluded for sensors since strain 
measurements are not representative of the damage detection methodology. 

To evaluate the performance of the clustering model, six damages were proposed individually, 
and they are located along the intrados surface. The damages were proposed as three ovals and 
three circles, ovals were simulated within the fracture model that APDL has, and the circles were 
defined as damage that might show up during real blade operation [5]. 

The characteristic length of the damages was set as 10% of MAC and the location is distributed 
inside the sensor’s area as shown in Figure 5. 

 

 

(a) 

 

(b) 
Figure 5. Wind turbine blade damages: (a) Ovals and (b) Circles. 

From the FEM model strains at virtual sensor locations were obtained for 10 pitch angles with 
and without different damages. To approximate a realistic data set, data should be grown 
artificially. Since a linear static FEM model was used, the first step in artificial data generation 
consisted of multiplying obtained data by random scalars between 2 to 10 and subsequently, by an 
artificial random gaussian noise which was selected to be ± 10% of the original strain values.  
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Each operational condition defined (pitch angle) had a vector of 𝑉𝑉1×120, with one time instant 
and 120 unitary strain measurements (40 virtual triaxial strain sensors). It was selected that each 
operational condition will have 1000 artificial replicas times 10 pitch angles, thus operational 
conditions matrixes will have a size of 𝐷𝐷10000×120. A similar approach is given to the cases of the 
blade with induced damage under a specific load.  In this way, a data set composed of 10000 strain 
measurements of 40 virtual sensors for baseline, 10000 strain measurements for validation data, 
and 10000 strain measurements for each damage condition, was built. 

This baseline may guarantee a level of confidence for a condition diagnosis of structure which 
should be related to a damaged or undamaged system. The time steps of baseline virtually 
generated 𝐷𝐷10000×120 are also randomly sorted as it should happen in real operation of a wind 
turbine blade due to external factors. 

The damage assessment under the strain mapping technique includes a specific configuration 
of the strain information collected in a matrix form. The data collection method is defined 
considering the information of the pristine and damaged structure. The information is collected in 
a matrix of size 𝐷𝐷𝑚𝑚×𝑖𝑖, the rows 𝑚𝑚 are time steps or the number of samples and, 𝑛𝑛 are the number 
of sensors, which, in this case, measures the unitary strain. 

Results and discussion 
The pipeline methodology called FA+GA-DBSCAN is selected to automatically define 
operational conditions. The resultant baseline consisted of eight clusters.  The representation is 
presented in Figure 6. The selection of these two parameters where automatized using a genetic 
algorithm, and then a dimensionality reduction was performed considering the well-known Factor 
Analysis method. The Factor Analysis model can be represented in terms of covariances according 
to the following equation:  

 
Figure 6. Left: Baseline artificially generated using Gaussian noise. Right: An example for 
damage detection using the FA index, six different levels of damage were detected using the 

generated baseline. 
The use of Factor Analysis for damage detection is performed considering the specific factor 

loadings of the new information. These specific loadings are defined as a correlation number for 
the specific variable being analyzed. As presented in Figure 7 (right), new unknown information 
belonging to six levels of damage can be projected to the baseline, it is evident that these 
projections are far away from the baseline, thus, these can be considered as information related to 
damage on structure.  

By using SOM-based unsupervised clustering it was possible to obtain 10 clusters, each one 
corresponding to one pitch angle. Each individual cluster was used to build a baseline model for 
such pitch angle. In a subsequent step, all damaged data were projected into the baseline models 
by performing an inverse SOM-based process, in which, damaged data are classified according to 
their similitude with baselines. Once damaged data are classified, PCA is used to project such 
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damaged data into its respective model, and a Q index is obtained. This process is graphically 
explained in Figure 1.  

Results are presented in  Figure  where the clusters segregation of SOM is presented at left (10 
clusters can be observed). The result of the Q index for cluster number 2 (baseline model number 
2) is presented at the center; it can be observed that the Q index for all damages is well separated 
from baseline and validation data. At the right of the figure, the performance of both clustering 
(SOM-based) process and Q index damage detection-based can be observed. For this example, the 
clustering technique serves to separate baselines and to assign the most similar baseline to damage 
data, however, it is not enough to perform a damage detection. On the other hand, by using PCA 
and Q index, the performance obtained for damage detection by using a specific baseline to project 
the most similar damage data into such baseline is remarkable (an accuracy of over 98%).  

 

 

 

 

Figure 7. Left: SOM for baselines for all pitch angles. Center: example of Q index for baseline 
number 2. Right: performance results for cluster number 2. 

Summary  
In summary, the strain field of a virtual representation of the blade from a wind turbine under 
dynamic loads was evaluated using two different approaches of data-driven models. The pristine 
representation of the blade was used to define a baseline which was specified by applying Gaussian 
noise to strain measurements of the blade under static loads. This process will define a baseline 
with different time instants and slight variations in loads as it could happen in a structure under 
dynamic loads. Furthermore, six levels of damage were included and the strain information from 
these levels was also considered in a dynamic setting. Two data-driven models were taken into 
consideration for damage evaluation SOM and FA-GA+DBSCAN. These models were capable of 
automatically define the pristine operational conditions with a remarkable accuracy. The 
identification of damage on the blade was satisfactory projecting new information to the baseline 
created.   
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