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Abstract. Vibration of buildings can be regarded as the wave propagation in the vertical direction. 
Stiffness deterioration of structures due to damages could be altered by the changes in velocity and 
attenuation of the traveling waves. Previous studies have proposed methods to construct a new 
wavefield from the original wavefield of the building, in which the propagation path of the waves 
can be more easily recognized. In this study, firstly, we construct the wavefield with the virtual 
source at the top of the building (deconvolved wave), which consist of one acausal up-going wave 
and one causal down-going wave. Then, the changes of deconvolved waves over time at the base 
and inter floors are visualized. Finally, the CNN is constructed to automatically recognize the 
change of the visualized wavefield. To generate training data of the CNN model, multivariate 
nonlinear vibration simulation, reconstruction of the wavefield and visualization of the wavefield 
based on the vibration data was performed. To validate the trained CNN, the data of a shake table 
test on a 1/3 scaled 18-story steel frame building is used. As the damage progresses, the changes 
in the wavefield are recognized. 
Introduction 
Evaluating the changes of dynamic properties (eg., natural frequencies) of structures under the 
ground motion can indicate potential damages or deterioration of structural components. However, 
natural frequencies are easily to be wandering by environmental factors, such as temperature [1]. 
Seismic response of buildings can be regarded as wave propagation in the vertical direction. 
During the past decades, wave propagation has been widely used to measure the vibration response 
of a structure [2]. In addition, after an earthquake happens, it is essential to quickly evaluate the 
building damages and behaviors after earthquakes to avoid further financial loss and the secondary 
destruction of buildings, achieving the purpose of Structural Health Monitoring (SHM). With the 
development of technology in image classification, the Convolutional Neural Networks (CNNs) 
based methods have been verified as one of the most accurate methods to classify images. 

To fast evaluate the behavior of buildings, a wave-propagation and CNNs-based method were 
proposed in this study. At first, a Multiple-Degree-of-Freedom (MDOF) Model was established 
by referencing the specimen of the 18-story steel frame building for the shake table test, and it is 
used to generate the CNN training dataset. Then wavefield figures from acceleration 
deconvolved waves of the simulations were used as the feature input for the CNN model, which 
is divided into two classifications, linear and non-linear. The trained CNN model can 
automatically recognize the classification of wavefield figures (linear or non-linear). Finally, the 
performance of the trained CNN model was verified by the shake table test data. 
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Shake-table tests of steel structures 
The shake-table test of a 1/3-scaled 18-story moment-frame steel building structure was performed 
at E-defense on December 9-11, 2013 [3], as shown in Figure 1. The responses are not only used 
to identify the reliability of the MDOF model but also used to generate data in the later section to 
test the performance of the trained CNN model. The seismic excitations were applied only in the 
longitudinal direction. The magnitude of input motion is evaluated in pseudo response velocity, 
which is adjusted following the value of pSv (pseudo response velocity) from 40 to 340 cm/s (with 
a damping ratio of 5%). The schedule of loading to the specimen is listed in Table 1. The maximum 
value of the pSv of the original seismic motion is 110 cm/s, which is named Case110. In Table 1, 
the numbers after the 'Case' present the maximum values of the pSv.   

 

 

Figure 1. The specimen of shake-table test. [3]  
Table 1. The loading schedule and status. 

Case States 
40 No damages (elastic) 

110 Plasticizing of the beam ends (2F to 7F) and columns (1F) 
180 Yielding of beam ends (2F to 14F) and cracks of beam ends (2F to 5F) 
220 Break of beam ends (2F) 
300 Break of beam ends (2F to 5F) 
340 Buckling of the columns base (1F) 

 
Simulation and evaluation of MDOF model  
Multiple-Degree-of-Freedom system 
Multiple-Degree-of-Freedom (MDOF) systems can model the behaviors of a shear building. In 
this paper, the establishment of the multi-degree-of-freedom equivalent model is based on the 
shake table test 18-story steel frame building in Section 2, which is used to generate the CNN 
training dataset.  

Table 2 shows the detailed parameters of the 18-floor steel frame building. The weight of each 
floor of the building is ununiform and the stiffness is different. The height of the first story is 
1.75 m, and the story height of other stories is 1.35 m. Besides, the restoring force characteristic 
of each floor is Tri-linear, the first turning point is 0.005 rad and the second turning point is 0.01 
rad, respectively. 
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Table 2. The detailed parameters of the shake table test 18-story steel frame building 

Floor Height of 
floor (cm) 

Mass 
(kN) 

Initial 
stiffness K1 

(kN/cm) 

Yield dis-
placement (cm) 

Second 
stiffness ratio 

K2/ K1 

Third 
stiffness ratio 

K3/ K2 
18 135 202 363 0.75 0.5 0.3 
17 135 206 491 0.89 0.5 0.3 
16 135 206 562 1.00 0.5 0.3 
15 135 206 619 1.08 0.5 0.3 
14 135 206 660 1.13 0.5 0.3 
13 135 206 712 1.23 0.5 0.3 
12 135 206 788 1.23 0.5 0.3 
11 135 208 824 1.30 0.5 0.3 
10 135 208 840 1.32 0.5 0.3 
9 135 208 876 1.30 0.5 0.3 
8 135 208 938 1.30 0.5 0.3 
7 135 208 963 1.34 0.5 0.3 
6 135 208 990 1.34 0.5 0.3 
5 135 208 1028 1.34 0.5 0.3 
4 135 208 1028 1.28 0.5 0.3 
3 135 208 1073 1.22 0.5 0.3 
2 135 208 1092 1.18 0.5 0.3 
1 170 208 1155 1.18 0.5 0.3 

 
Evaluation of MDOF 
To evaluate the reliability of the equivalent MDOF models, the shake-table test data of Case40, 
Case110, Case 180, Case 220, and Case300 were selected as the input motions. The distribution 
of the maximum response drift angle and maximum response acceleration of measured and 
simulated data in the direction of building height are shown in Figures 2 and 3, respectively. 
Considering the expression of the measured data obtained from the recorded report [4], these 
figures use ‘pSv’ instead of ‘Case’. It can be seen that the simulation values of the MDOF model 
are in good agreement with the true values of acceleration and story drift angle for all floors of the 
building.  

  

(a)  (b)  
Figure 2. The maximum response drift angle of (a) Measured data [4] and (b) Simulated 

data. 
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(a)  (b)  
Figure 3. The maximum response acceleration of (a) Measured data [4] and (b) Simulated 

data. 

Training and verification of CNN model 
Reconstruction of wave filed 
From the changes of wave propagation within the stories, such as the travel time, the local 
properties of the traveled stories can be examined [5, 6]. However, it is difficult to read the wave 
travel time from the waveforms directly. Because the propagation velocity of shear wave in the 
vertical direction depends on the shear stiffness of the stories, it is possible to evaluate the damages 
of inter stories. Therefore, in this study, we pay attention to the propagation of shear waves, which 
generates horizontal vibrations at the floors.  

In order to construct a new wave field, from which it is easier to read the shear-wave 
propagation, in the study, the deconvolved waves of inter stories with respect to the response of 
the top are used. In the new wave field, the virtual source (impulse) is at the top of the building. 
As examples, the travel time and deconvolved waves calculated from the responses in Case40 
(linear case) and Case300 (non-linear case) are shown in Figure 4. By comparing Figure 4 (c) 
and (d), we can find that because of the occurrence of damage, the trace of impulse becomes 
blurry and even disappeared for non-linear cases, while the impulse in the linear case is obvious. 
This feature will be regarded as the recognition feature for using the CNN model to identify 
linear and nonlinear cases automatically. 
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(a)  (b)  

 

 

(c)  (d)  
Figure 4. (a) Deconvolved waves in Case40 (linear case) and (b) in Case300 (non-linear 

case) with the virtual source at the top of buildings; Visualization of varying of 
deconvolved waves within the duration of vibration at the first floor for the (c) Case40 and 
(d) Case300. The lower figures are the 3D expression of the upper figures, which are input 

to the CNN for feature recognization. 
 
Establishing the ground motion dataset for CNN model training 
The architecture of the CNN model used is shown in Figure 5. As illustrated in this figure, AlexNet 
[7] network is used as CNN architecture in this study, which consists of 8 layers of a convolutional 
neural network, including five convolutional layers and three fully connected layers. The input 
figures were resized to 224 × 224 pixels, but the actual size is 227 × 227. The training data were 
classified into two classifications, “linear” and “non-linear,” with “linear” set to 0 and “non-linear” 
set to 1, and the learning rate was set to 0.01.  

Although the number of real data for the training CNN models is limited, it can be overcome 
by numerical simulation. At present, there are several open-access ground motion databases such 
as the K-NET database [8] of Japan that can be used for training the CNN models. For this study, 
almost 80 ground motion records are selected from the K-NET database, as shown in Table 3. 
The reliability of MDOF models is evaluated at different performance levels, ranging from 
elastic to highly inelastic behavior. 
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Figure 5. Convolutional neural network architecture based on AlexNet [7]. 
 

Table 3. The earthquake input motions for generating CNN training dataset 
Year/Month 

/Date 
Earthquak

e name 
Magni
t-ude Site code PGA 

(cm/s2) 
Direction 

used Site code PGA 
(cm/s2) 

Directio
n used 

2016/4/14 Kumamoto 7.3 

KMM001 49.3 EW KMM018 50.1 EW 
KMM002 160.8 EW KMM019 56.3 EW 
KMM003 79.5 EW KMM022 36.2 EW 
KMM004 207.1 EW FKO004 43.6 EW 
KMM005 195.5 NS FKO005 55.5 EW 
KMM006 381.4 EW FKO011 41.8 EW 
KMM007 205.9 EW FKO013 70.9 EW 
KMM008 149.9 NS FKO015 92.0 EW 
KMM009 304.2 EW FKO016 80.6 EW 
KMM010 263.5 NS FKO004 42.5 EW 
KMM011 546.9 EW KGS001 52.4 EW 
KMM012 380.9 NS KGS001 48.3 EW 
KMM013 145.3 NS KGS003 90.0 EW 
KMM014 62.8 NS KGS006 75.5 EW 
KMM015 58.8 EW MYZ001 53.2 EW 
KMM016 48.7 NS MYZ002 50.1 EW 
KMM017 39.3 EW MYZ003 56.3 EW 

2022/3/16 Fukushima 7.4 

FKS001 727.5  EW FKS001 565.6 NS 
FKS002 750.5  EW FKS002 572.9 NS 
FKS003 294.7  EW FKS003 277.1 NS 
FKS004 608.9  EW FKS004 519.9 NS 
FKS005 514.6  EW FKS005 607.8 NS 
FKS006 530.4  EW FKS006 530.9 NS 
FKS007 456.1  EW FKS007 512.9 NS 
FKS008 517.6  EW FKS008 658.9 NS 
FKS009 309.5  EW FKS009 375.7 NS 
FKS010 426.8  EW FKS010 525.9 NS 

 
Training and verification CNN model 
The ground motions obtained from the K-NET database are designated as the training (including 
validation) datasets using the simulation of the MDOF model. The CNN was trained and validated 
using a total number of 2000 images of deconvolved waves at 1F to 18F of the MDOF model, in 
which 1000 images are linear cases and 1000 images are non-linear cases. Besides, 1800 figures 
were used for training, and the remaining 200 images were used to verify the trained CNN. For 
testing the trained CNN model, 60 figures of deconvolved waves of 1F~18F using the shake-table 
test data were selected.  
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The results of training and test data are shown in Figure 6, including the changes of accuracy 
value and mean loss value with the increase of the epoch. As can be seen in these figures, 94.7% 
accuracy is achieved for CNN training data for the recognition of linear or non-linear cases and 
94.6% accuracy is achieved for CNN test data. For the mean loss value, the training data and test 
data both show decreasing trends with the increase of epoch. In short, the trained CNN model 
achieves good performance. 

  

(a) (b) 

Figure 6. The accuracy and loss results of training and validation data. 

Conclusions 
In this study, a CNN-based approach for recognizing the linear and non-linear behavior of 
buildings using visualized deconvolved waves is proposed. To generate training data, a multiple-
degree-of-freedom model of the 18-story specimen of the shake-table test is established to simulate 
the seismic response. Numerical simulations can overcome the limited amount of actual data for 
training CNN models. Furthermore, we calculated the deconvolved waves from the numerical 
simulation seismic response, which are visualized and fed to train a convolutional neural network 
(CNN) to classify “linear” or “non-linear.” The trained CNN model is used to recognize figures of 
linear and non-linear cases of structures, and the accuracy of proposed method is satisfactory 
(94.7% and 94.6%). The findings of this study can be used to monitor the health situations of the 
structures in the future. 
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