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Abstract. This study aims to investigate the applicability of ambient cable vibrations for cable 
tension estimation and the identification uncertainty and effect of EOVs in the long-term SHM of 
cable tensions. An advantage of long-term ambient vibration monitoring is that there is no need to 
close roads for the monitoring campaign once a monitoring system is installed. A disadvantage of 
long-term environmental vibration monitoring is the difficulty in dealing with uncertainties caused 
by environmental and operational variations (EOVs). A Bayesian approach to quantify 
uncertainties in monitoring is thus proposed for the identification of cable tension. Variations of 
the identified cable tension in the short- and long-term monitoring are examined to discuss the 
need for normalization of EOVs in damage detection. Long-term monitoring of the cable-stayed 
bridge showed that it is possible to estimate cable tension using ambient vibration measurements, 
but that the seasonal variation is greater for longer cables than for shorter cables, making it clear 
that a trend component of the seasonal variation needs to be taken into account. 
Introduction 
The cable-stayed bridge, with excellent performance for long-span crossing, has been widely 
constructed around the world. As a crucial component in this structure, the stayed cable is always 
faced with long-term deterioration caused by corrosion, fatigue, etc. For the management and 
maintenance of the cable-stayed bridge, it is of great meaning to conduct the real-time long-term 
SHM in the stayed cables, among which the dynamic characteristics and cable tension are 
acknowledged as two informative features reflecting the condition of cables and bridge. 

Without the request of artificial excitation, ambient-vibration-based long-term SHM offers a 
promising way for realizing remote and economical monitoring of bridges. There have been many 
types of research such as frequency domain decomposition (FDD), stochastic subspace 
identification (SSI), a series of Bayesian operational modal analysis methods (e.g. Fast Bayesian 
FFT), etc., which make the ambient-vibration-based modal analysis efficient and flexible. Further, 
cable tension, as a more intuitional physical feature, has also been investigated in the relation to 
the dynamics of cables [1–3]. 

By examining the estimated cable tension in long-term SHM, it is believed that potential 
damage effects in cables can be traced timely. However, there are still many issues remaining in 
the ambient-vibration-based long-term SHM. One is the low signal-to-noise ratio (SNR) with weak 
excitation which makes the identification uncertainty prominent. Another one is the effect of 
environmental and operational variations (EOVs), which raises the variability of long-term records 
in SHM. Therefore, to make a deep perception of these issues, this study investigates ambient-
vibration-based cable tension estimation and the identification uncertainty and EOVs-induced 
variability in the long-term monitoring of cable tensions with Bayesian approaches. 
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Theoretical background 

Fast Bayesian FFT 
As one of the ambient-vibration-based operational modal analysis methods, a fast Bayesian FFT 
approach [4,5] is introduced here. By associating Bayesian inference with the FFTs of vibration 
response, Bayesian FFT gives a basic form as 

𝑝𝑝�θ�ℱ�𝑘𝑘� = 𝑝𝑝�ℱ�𝑘𝑘�
−1𝑝𝑝�ℱ�𝑘𝑘�θ�𝑝𝑝(θ) (1) 

where 𝜃𝜃 denotes the system parameters of the structure to be identified, and 𝐹𝐹�𝑘𝑘 are the estimated 
FFTs data at different frequencies 𝑓𝑓𝑘𝑘. 

Assuming that the power spectral density (PSD) is complex Gaussian distribution and 
independent at different frequencies, the posterior distribution in Eq. 1 has a linear relationship 
with the likelihood function as follows. 

𝑝𝑝�𝜃𝜃�ℱ�𝑘𝑘� ∝ 𝑝𝑝�ℱ�𝑘𝑘�𝜃𝜃� =
𝜋𝜋−𝑛𝑛𝑁𝑁𝑓𝑓

∏ |𝐸𝐸𝑘𝑘(𝜃𝜃)|𝑘𝑘
𝑒𝑒𝑒𝑒𝑝𝑝 �−�ℱ�𝑘𝑘∗𝐸𝐸𝑘𝑘(𝜃𝜃)−1ℱ�𝑘𝑘

𝑘𝑘

� = 𝑒𝑒−𝐿𝐿(𝜃𝜃)  (2) 

   The theoretical PSD matrix of data at the kth FFT for given 𝜃𝜃 is shown in Eq. 3.  

E𝑘𝑘(θ) = 𝐸𝐸�ℱ�𝑘𝑘ℱ�𝑘𝑘
∗�θ�+𝐸𝐸[𝜀𝜀𝑘𝑘𝜀𝜀𝑘𝑘∗|θ] = ∑ ∑ ℎ𝑖𝑖𝑘𝑘ℎ𝑗𝑗𝑘𝑘

∗𝑚𝑚
𝑗𝑗=1 𝑆𝑆𝑖𝑖𝑗𝑗𝑘𝑘𝜙𝜙𝑖𝑖𝜙𝜙𝑗𝑗𝑇𝑇𝑚𝑚

𝑖𝑖=1 + 𝑆𝑆𝑒𝑒I𝑛𝑛= Φ H𝑘𝑘Φ𝑇𝑇 + 𝑆𝑆𝑒𝑒I𝑛𝑛 (3) 

   The ‘negative log-likelihood function’ (NLLF) of Eq. 2 can be written as Eq. 4. The most 
probable value (MPV) of 𝜃𝜃 can be estimated as,  𝜃𝜃� = arg min𝜃𝜃𝐿𝐿(𝜃𝜃). 

𝐿𝐿(𝜃𝜃) = 𝑛𝑛𝑁𝑁𝑓𝑓𝑙𝑙𝑛𝑛𝜋𝜋 + �𝑙𝑙𝑛𝑛
𝑘𝑘

|𝐸𝐸𝑘𝑘(𝜃𝜃)| + �ℱ�𝑘𝑘∗𝐸𝐸𝑘𝑘(𝜃𝜃)−1ℱ�𝑘𝑘
𝑘𝑘

 (4) 

where, the system parameter 𝜃𝜃 comprises modal frequencies 𝑓𝑓𝑖𝑖𝑖𝑖=1
𝑟𝑟  and modal damping ratios 𝜁𝜁𝑖𝑖𝑖𝑖=1

𝑟𝑟  
denoted in transfer functions ℎ𝑖𝑖𝑘𝑘𝑖𝑖=1

𝑟𝑟  corresponding to each mode, partial mode shapes 𝜑𝜑𝑖𝑖𝑖𝑖=1
𝑟𝑟 , PSD 

matrix of modal forces 𝑆𝑆 = �𝑆𝑆𝑖𝑖𝑗𝑗�𝑟𝑟×𝑟𝑟
, and the PSD matrix of prediction errors 𝑆𝑆𝑒𝑒𝐼𝐼𝑛𝑛. In addition, r 

represents the number of dominant modes in a specified frequency band where the estimation is 
conducted. n is the number of sensors to collect the ambient vibration response. Nf is the number 
of FFT points in the specified frequency band. 

Bayesian cable tension estimation 
The relation between the modal frequency of cable and cable tension can be derived from the free 
vibration differential equation of cable as follows. 

𝑚𝑚
𝜕𝜕2𝑣𝑣(𝑒𝑒, 𝑡𝑡)
𝜕𝜕𝑡𝑡2

+ 𝐸𝐸𝐼𝐼
𝜕𝜕4𝑣𝑣(𝑒𝑒, 𝑡𝑡)
𝜕𝜕𝑒𝑒4

− 𝑇𝑇
𝜕𝜕2𝑣𝑣(𝑒𝑒, 𝑡𝑡)
𝜕𝜕𝑒𝑒2

− ℎ(𝑡𝑡)
𝜕𝜕2𝑣𝑣(𝑒𝑒, 𝑡𝑡)
𝜕𝜕𝑒𝑒2

= 0 (5) 

where 𝑣𝑣(𝑒𝑒, 𝑡𝑡) denotes the vertical vibration deflection, x is the longitudinal coordinate of the cable 
and t denotes time. The symbol m is the mass of the cable per unit length, EI denotes the flexural 
rigidity of the cable and T is the cable tension force. The notation h(t) is the dynamic tension. 

According to [1–3], the influence of ambient vibration-induced dynamic cable tension h(t) and 
the cable sag is generally small and ignorable for simplicity. Assuming that the boundary condition 
is simply supported, the solution of Eq. 5 can be presented as follows. 

�
𝑓𝑓𝑖𝑖
𝑖𝑖
�
2

=
𝜋𝜋2𝑖𝑖2

4𝑚𝑚𝑙𝑙4
𝐸𝐸𝐼𝐼 +

1
4𝑚𝑚𝑙𝑙2

𝑇𝑇 (6) 

where i is mode order and fi denotes the ith modal frequency of the cable; l is the length of cable. 
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Then, when the cable vibration is more similar to a string (the contribution of EI on modal 
frequency is rather small), the equation can be further simplified as follows. 

�
𝑓𝑓𝑖𝑖
𝑖𝑖
�
2

=
1

4𝑚𝑚𝑙𝑙2
𝑇𝑇 (7) 

With identified modal frequencies of the cable, the estimation of cable tension from Eq. 6 and 
Eq. 7 can be treated as a regression problem. A basic form of the Bayesian linear regression (BLR) 
model can be written as follows. 

𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝜀𝜀, 𝜀𝜀~𝑁𝑁(0,𝜎𝜎2) (8) 

where y is an 𝑛𝑛 × 1 vector of response variable; X is an 𝑛𝑛 × 𝑑𝑑  matrix of predictor variables; 𝑋𝑋 is 
a  𝑑𝑑 × 1  vector of coefficients; ε denotes the iid error term which obeys a normal distribution with 
zero mean and variance 𝜎𝜎2 for each observation; n is the number of observations, and d is the 
number of predictor variables. The Bayesian inference can then be used to obtain the posterior 
distribution of (𝑋𝑋,𝜎𝜎2) as follows. 

 𝑝𝑝(𝑋𝑋,𝜎𝜎2|𝑦𝑦,𝑋𝑋) = 𝑝𝑝(𝑦𝑦|𝑋𝑋)−1 ∙ 𝑝𝑝(𝑦𝑦|𝑋𝑋,𝑋𝑋,𝜎𝜎2) ∙ 𝑝𝑝(𝑋𝑋,𝜎𝜎2) (9) 

Further, the marginal posterior of 𝑋𝑋 can be given as, 

𝑝𝑝(𝑋𝑋|𝑦𝑦,𝑋𝑋) = �𝑝𝑝(𝑋𝑋,𝜎𝜎2|𝑦𝑦,𝑋𝑋)𝑑𝑑𝜎𝜎2 (10) 

When the Jeffreys non-informative prior is given as Eq. 11, 

𝑝𝑝(𝑋𝑋,𝜎𝜎2) ∝
1
𝜎𝜎2

 (11) 

the marginal posterior of 𝑋𝑋 is analytically tractable and follows a d dimensional t-location-scale 
distribution shown in Eq. 12. 

𝑝𝑝(𝑋𝑋|𝑦𝑦,𝑋𝑋)~𝑡𝑡𝑑𝑑 ��̂�𝑋,
(𝑦𝑦 − 𝑋𝑋�̂�𝑋)′(𝑦𝑦 − 𝑋𝑋�̂�𝑋)

𝑛𝑛 − 𝑑𝑑
(𝑋𝑋′𝑋𝑋)−1,𝑛𝑛 − 𝑑𝑑� (12) 

where the three parts in the right hand are the location parameter, scale parameter, degree of 
freedom, in sequence. (∙)′ represents a transposition of (∙). The notations (𝑦𝑦,𝑋𝑋,𝑋𝑋,𝑛𝑛, 𝑑𝑑) are the 
same as Eq. 8, while �̂�𝑋 is the least-squares estimate of 𝑋𝑋 with a form as follows. 

�̂�𝑋 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑦𝑦 (13) 

Without loss of generality, taking Eq. 6 into the form as Eq. 8, the Bayesian cable tension 
estimation framework can be established as shown in Eq. 14. 

𝑦𝑦 = ��
𝑓𝑓𝑖𝑖
𝑖𝑖
�
2

�
𝑛𝑛×1

,𝑋𝑋 = �𝜋𝜋
2𝑖𝑖2

4𝑚𝑚𝑙𝑙4
1

4𝑚𝑚𝑙𝑙2
�
𝑛𝑛×2

,𝑋𝑋 = �𝐸𝐸𝐼𝐼𝑇𝑇 �2×1
 (14) 

    The posterior distribution of 𝑋𝑋 contributes to a simultaneous estimation of cable tension and 
flexural rigidity, along with the estimation uncertainty. 

Predictive probabilistic model considering ensemble variability 
The Bayesian estimates of cable tensions in long-term SHM is a sequence involving identification 
uncertainty within each estimate, and EOVs-induced variability among different estimates. Under 
the framework of the Bayesian cable tension estimation, the identification uncertainty can be 
clarified by posterior variance. Furthermore, to represent the ensemble variability by integrating 
the identification uncertainty and EOVs-induced variability in long-term SHM, a predictive 
probabilistic model is proposed with a mixture model [6]. 
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Assuming that the long-term SHM is conducted over a rather long period with sufficient data 
sets covering almost all the environmental and operational situations (EOSs) of a bridge in general 
state, the predictive probabilistic model of cable tension at a certain future time (without any other 
information which implies corresponding EOS) is given by a mixture model under the theorem of 
total probability as follows. 

𝑝𝑝�𝑇𝑇𝑓𝑓�𝐷𝐷� = �𝑝𝑝(𝐸𝐸𝐸𝐸𝑆𝑆𝑖𝑖|𝐷𝐷)𝑝𝑝�𝑇𝑇𝑓𝑓�𝐷𝐷,𝐸𝐸𝐸𝐸𝑆𝑆𝑖𝑖�
𝑁𝑁𝑠𝑠

𝑖𝑖=1

=
1
𝑁𝑁𝑠𝑠
�𝑝𝑝(𝑇𝑇|𝐷𝐷𝑖𝑖)
𝑁𝑁𝑠𝑠

𝑖𝑖=1

 (15) 

where 𝑝𝑝�𝑇𝑇𝑓𝑓�𝐷𝐷� denotes the predictive probabilistic model of cable tension 𝑇𝑇𝑓𝑓 at a certain future 
time, given the past long-term SHM data sets 𝐷𝐷 = {𝐷𝐷𝑖𝑖}𝑖𝑖=1

𝑁𝑁𝑠𝑠 . The probability of the case that 
unknown EOS in a certain future time corresponds to the EOS in either segment 𝐷𝐷𝑖𝑖 in the past 
long-term SHM is assumed to be equal as 𝑝𝑝(𝐸𝐸𝐸𝐸𝑆𝑆𝑖𝑖|𝐷𝐷) = 1/𝑁𝑁𝑠𝑠, without any additional information 
indicating corresponding EOS. 𝑝𝑝�𝑇𝑇𝑓𝑓�𝐷𝐷,𝐸𝐸𝐸𝐸𝑆𝑆𝑖𝑖� represents the predictive distribution of cable 
tension 𝑇𝑇𝑓𝑓 at a certain future time with a definite EOS corresponding to that of 𝐷𝐷𝑖𝑖, and is equal to 
the posterior distribution 𝑝𝑝(𝑇𝑇|𝐷𝐷𝑖𝑖) acquired by Bayesian cable tension estimation at corresponding 
data segment 𝐷𝐷𝑖𝑖. 

The predictive probability model can be regarded as an integration of the identification 
uncertainty in the long-term SHM and the variability due to EOVs, representing the ensemble 
variability of cable tension over a long period of similar length under general bridge condition. 
Then, the damaging effect may be compared with the ensemble variability that offers information 
for the management of cable-stayed bridges. 
Ambient vibration monitoring on a cable-stayed bridge 

Target bridge and monitoring system 
The target bridge is a single-tower cable-stayed bridge shown in Fig. 1. The span length of the 
bridge is about 124 m and the height of the pylon is about 48 m. A short-term ambient vibration 
test was carried out in November 2020. The corresponding sensor setup and structural layout are 
shown in Fig. 2. Ambient-vibration signals from cables at the anchor, cables at the bridge deck, 
bridge deck, and the pylon were collected during the short-term test. Further, the long-term SHM 
of two cables (the longest one (C1) and the shortest one (C5)) at the bridge deck was conducted 
from December 2020 to January 2022, with the ambient vibration signals recorded remotely. 
 

 

Fig. 1. A side view of the cable-stayed bridge. 
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Fig. 2. Layout and sensor setup of the short-term SHM system. 

 

(a)   (b)  
Fig. 3. (a) SVS of bridge and (b) PSD of cable C1. 

Table 1. Results of operational modal analysis of cables by Bayesian FFT. 
Cable [Modal frequency (Hz); standard deviation (Hz)] for each modal order 

1 2 3 4 5 
C1 1.07; 0.0010 2.11; 0.0012 3.18; 0.0009 4.24; 0.0020 5.31; 0.0013 
C5 2.07; 0.0013 4.14; 0.0014 6.26; 0.0031 8.45; 0.0058 10.63; 0.0035 
C8 1.64; 0.0026 3.32; 0.0088 4.96; 0.0040 6.65; 0.0057 8.14; 0.0033 

Operational modal analysis and cable tension estimation 
To get the dynamic characteristics of the bridge and cables, the fast Bayesian FFT was first applied 
for operational modal analysis of the bridge and cables. In this paper, three typical cables (C1, C5, 
and C8 cables as marked in Fig. 2) are selected to simplify the discussion even though all the 
cables were measured during the short-term test. As a pre-step for specifying initial values and 
searching band of optimization algorithm, the singular value spectrum (SVS) of the bridge (see 
Fig. 3(a)) and the power spectral density (PSD) plots of cables (see Fig. 3(b)) were investigated. 
Details about the fast Bayesian FFT with SVS can be found in [4, 5]. In the PSD plot of cables 
shown in Fig. 3(b), the first SVS line of the bridge is overlapped to help eliminate frequencies 
originating from the global modes of the bridge. It can be noted from Fig. 3(b) that some global 
modes of the bridge appearing in the SVS also appear in the PSD of cables, which indicated the 
ambient vibration of stayed cable was mixed with interference from the global vibration of the 
bridge. The mean and standard deviation of the identified frequencies from the ambient-vibration-
based operational modal analysis are summarized in Table 1. 

The proposed Bayesian cable tension estimation is applied to identify cable tensions from 
ambient vibrations. A model selection between Eq. 6 for the simply supported beam theory and 
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Eq. 7 for the string theory was carried out by the means of Bayes factor B1/0 which is the ratio of 
two model evidence with two hypotheses H0 and H1. Therein, H0 denotes the null hypothesis 
meaning that identified modal frequencies support Eq. 6 more, i.e. the effect of the flexural rigidity 
on cable tension identification cannot be ignored, while H1 denotes the alternative hypothesis 
meaning that the data support Eq. 7 more, i.e. the effect of flexural rigidity can be ignored. The 
Bayes factor along with increasing uncertainty in the prior distribution is presented in Fig. 4(a), 
where V is a hyper-parameter of Gaussian-Inverse-Gamma conjugate prior which controls the 
uncertainty in the prior of parameters (EI, T). It indicates that with less prior information about 
cable tension, the identified modal frequencies support the string theory more, i.e., the effect of 
flexural rigidity can be ignored in the subsequent procedure of the Bayesian cable tension 
estimation. The estimated cable tension using the Bayesian linear regression is shown in Figs. 4(b-
d). It is noted that the identification uncertainty in the three cables was different; i.e., the lowest 
identification uncertainty was observed at the longest cable at the bridge deck (C1 cable). 
 

 
(a) Bayes factor for model selection.                (b) For cable C1. 

 
(c) For cable C5.      (d) For cable C8. 

Fig. 4. (a) Bayes factor along with increasing uncertainty in prior distribution of cable tension; 
(b)(c)(d) Prior and posterior estimates of cable tension T and error variance σ2. 

Finite element analysis (FEA) 
As a verification of the ambient-vibration-based operational modal analysis and cable tension 
estimation by field test, a finite element model of the cable-stayed bridge was also created as shown 
in Fig. 5. The simulated cable tensions are shown in Table 2 compared with the ambient-vibration-
based estimates and the design value. From Table 2, it can be noted that the FEA and design value 
match well as the design value was also decided by means of FEA with beam elements during the 
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design stage. The ambient-vibration-based estimates for the cable at the anchor were close to the 
FEA and design values, while the estimates for the cables at the bridge deck were lower than those 
of FEA and design values. A possible reason for this phenomenon may be the complexity of 
ambient vibration for the cable at the bridge deck end. On one hand, the ambient vibration of the 
cable is coupled with the bridge deck. On the other, the vibration model of cable at the bridge deck 
can be viewed as a string with vibrating support, which is kind of different from the above string 
model. These two aspects may further decrease the rigidity of cable at the bridge deck, which is 
not considered in Eqs. 5, 6, and 7. 
 

 
Fig. 5. Finite element model of the cable-stayed bridge. 

Table 2. Comparison of Bayesian cable tension estimates, FEA and design value. 

Cable Sensor 
Bayesian estimates FEA Design 

Tension (kN) Tension (kN) Tension (kN) 

C1 
015 2505 3127 

3120 
115 2494 3140 

C5 
011 1056 1200 

1360 
111 1082 1209 

C8 
001 4374 4256 

4400 
101 4422 4257 

 
Fig. 6. Long-term sequence of Bayesian cable tension estimates (upper plot for C1; lower plot 

for C5). 
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Fig. 7. Ensemble variability involving the identification uncertainty and EOVs (upper plot for 

cable C1, lower plot for cable C5). 

Ambient-vibration-based long-term SHM of cables 
Long-term ambient vibration monitoring was also conducted for the longest and the shortest cables 
at the bridge deck, i.e. C1 and C5 cables. Although an inconsistency between the ambient-
vibration-based cable tension estimates and the FEA was observed for the cables at the bridge deck 
in the last section, the ambient-vibration-based results can still be used as a nominal damage-
sensitive feature for anomaly indication in long-term SHM with its convenience. The long-term 
sequence of Bayesian cable tension estimates is shown in Fig. 6. Observing the sequence of cable 
tension estimates, it can be noted that the identification uncertainty and the effect of EOVs in two 
cables occupied different extents. Further, by using the predictive probabilistic model introduced 
before, the predictive distribution for an unknown future time point is given by Fig. 7 with a 
depiction of ensemble variability. From Fig. 7, it is clearly noted that the effect of EOVs is 
dominant in the longest cable at the bridge deck, while for the shortest cable, the identification 
uncertainty contributes more to the ensemble variability. This observation may offer some 
guidance for the research of seasonal effects in long-term SHM of cable tensions. 
Conclusions 
This paper investigates the Bayesian operational modal analysis and cable tension estimation of a 
cable-stayed bridge using ambient vibration and investigated the identification uncertainty and 
effect of EOVs in long-term SHM of cables.  

For the operational modal analysis, the analysis showed that the interference from the bridge 
vibration to the cables should be noticed, which may further affect the accuracy of identified modal 
frequency and cable tension. 

An ambient-vibration-based Bayesian cable tension estimation method was introduced and 
verified comparing with the design value and FEA. It is noted that the estimates for the cable at 
the bridge anchor are close to the design value as well as FEA, while the estimates for the cables 
at the bridge deck are overall lower than the design value and FEA, which is inferred as a result of 
the different physical models of cables at bridge deck and ground anchor side, respectively. 

The identification uncertainty and effect of EOVs in cable tensions were investigated in the 
long-term SHM. It is noted that the effect of EOVs is more prominent in the longest cable than the 
shortest one, which indicated the longer cables in the cable-stayed bridge may be more sensitive 
to the EOVs and it may be worthwhile to conduct data normalization in these cables. 
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