Obtaining of W/Cu nanocomposite powders by high energy ball milling process

Obtaining of W/Cu nanocomposite powders by high energy ball milling process

Claudiu NICOLICESCU, Victor Horia NICOARĂ, Florin POPA, Traian Florin MARINCA

download PDF

Abstract. The morphology of the particles is important in the process of obtaining alloys based on W/Cu, thus this investigation is focused on the influence of the copper content on the properties of W/Cu nanocomposites powders obtained after 20 hours of high energy ball milling. The experimental results regarding the obtaining of W100-x/Cux nanocomposites (x between 20 and 45 wt. %) are presented. Composition of the mixtures influenced the particle size distribution namely, the higher is Cu content the larger dimensions of the particles will be attained. After 20 hours of high energy ball milling the crystallites size was about 30 nm for copper respectively 12 nm for tungsten and Cu atoms entered in the W structure.

Keywords
Powder metallurgy, Tungsten nanopowders, W/Cu nanocomposite powders, Mechanical milling

Published online 11/5/2018, 9 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Claudiu NICOLICESCU, Victor Horia NICOARĂ, Florin POPA, Traian Florin MARINCA, ‘Obtaining of W/Cu nanocomposite powders by high energy ball milling process’, Materials Research Proceedings, Vol. 8, pp 173-181, 2018

DOI: http://dx.doi.org/10.21741/9781945291999-20

The article was published as article 20 of the book Powder Metallurgy and Advanced Materials

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] D.G. Kim, G.S. Kim, M.J. Suk, et al., Effect of heating rate on microstructural homogeneity of sintered W-15 wt% Cu nanocomposite fabricated from W-CuO powder mixture, Scr. Mater. 51 (2004) 677-681. https://doi.org/10.1016/j.scriptamat.2004.06.014
[2] F.T.N. Vüllers, R. Spolenak, From solid solutions to fully phase separated interpenetrating networks in sputter deposited “immiscible” W-Cu thin films, Acta Mater. 99 (2015) 213-227. https://doi.org/10.1016/j.actamat.2015.07.050
[3] A. Elaayed, W. Li, O.A. El Kady, et al., Experimental investigations on the synthesis of W-Cu nanocomposite through spark plasma sintering, J. Alloys Compd. 639 (2015) 373-380. https://doi.org/10.1016/j.jallcom.2015.03.183
[4] Q. Zhou, P.W. Chen, Fabrication of W-Cu composite by shock consolidation of Cu-coated W powders, J. Alloys Compd. 657 (2016) 215-223. https://doi.org/10.1016/j.jallcom.2015.10.057
[5] W.T. Qiu, Y. Pang, Z. Xiao, et al., Preparation of W-Cu alloy with high density and ultrafine grains by mechanical alloying and high pressure sintering, Int. J. Refract. Met. Hard Mater. 61 (2016) 91-97. https://doi.org/10.1016/j.ijrmhm.2016.07.013
[6] S.H. Liang, L. Chen, Z.X. Yuan, et al., Infiltrated W-Cu composites with combined architecture of hierarchical particulate tungsten and tungsten fibers, Mater. Charact. 110 (2015) 33-38. https://doi.org/10.1016/j.matchar.2015.10.010
[7] Y. Yu, W. Zhang, H. Yu, Effect of Cu content and heat treatment on the properties and microstructure of W-Cu composites produced by hot extrusion with steel cup, Adv. Powder Technol. 26 (2015) 1047-1052. https://doi.org/10.1016/j.apt.2015.04.012
[8] C. Ding, X.C. Yuan, Z.B. Li, et al., Contact erosion characteristics in making process of SF6 circuit breakers, High Volt. Eng. 40 (2014) 3228-3232.
[9] Q. Zhang, X.H. Yang, B.Y. Liu, et al., Failure analysis of capacitor bank switch arcing contact for ultra-high voltage system, High Volt. Appar. 52 (2016) 27-32.
[10] Q. Zhang, S.H. Liang, B.Q. Hou, et al., The effect of submicron-sized initial tungsten powders on microstructure and properties of infiltrated W-25 wt% Cu alloys, Int. J. Refract. Met. Hard Mater. 59 (2016) 87-92. https://doi.org/10.1016/j.ijrmhm.2016.05.014
[11] Q. Zhang, S. Liang, L. Zhuo, Fabrication and properties of the W-30wt%Cu gradient composite with W@WC core-shell structure, Journal of Alloys and Compounds, 708 (2017) 796-803. https://doi.org/10.1016/j.jallcom.2017.03.064
[12] J. Johnson, R. German, Phase equilibria effects on the enhanced liquid phase sintering of tungsten-copper, Metall. Trans. A. 24 (1993) 2369–2377. https://doi.org/10.1007/BF02646516
[13] S.H. Hong, B.K. Kim, Fabrication of W–20 wt.% Cu composite nanopowder and sintered alloy with high thermal conductivity, Mater. Lett. 57 (2003) 2761–2767. https://doi.org/10.1016/S0167-577X(03)00071-5
[14] P. Chen, Q. Shen, G. Luo, M. Li, L. Zhang, Themechanical properties of W–Cu composite by activated sintering, Int. J. Refract. Met. Hard Mater. 36 (2013) 220–224. https://doi.org/10.1016/j.ijrmhm.2012.09.001
[15] Ijaz Ul Mohsin, Christian Gierl, Herbert Danninger, Sintering study of injection molded W–8%Ni–2%Cu compacts from mixed powders by thermoanalytical techniques, Int. Journal of Refractory Metals and Hard Materials, 29 (2011) 532–537. https://doi.org/10.1016/j.ijrmhm.2011.03.006
[16] J.S. Lee, T.H. Kim, Densification and microstructure of the nanocomposite W-Cu powders, Nanostruct. Mater. 6 (1995) 691–694. https://doi.org/10.1016/0965-9773(95)00152-2
[17] L.J. Kecskes, M.D. Trexler, B.R. Klotz, K.C. Cho, R.J. Dowding, Densification and structural change of mechanically alloyed W-Cu composites, Metall. Mater. Trans. A. 32A (2001) 2885–2893. https://doi.org/10.1007/s11661-001-1039-0
[18] F.A. Costa, A.G. Silva, U.U. Gomes, The influence of the dispersion technique on the characteristics of the W–Cu powders and on the sintering behavior, Powder Technol. 134 (2003) 123–132. https://doi.org/10.1016/S0032-5910(03)00123-2
[19] M.H. Maneshian, A. Simchi, Z.R. Hesabi, Structural changes during synthesizing of nanostructured W–20 wt% Cu composite powder by mechanical alloying, Mater. Sci. Eng. A. 445–446 (2007) 86–93. https://doi.org/10.1016/j.msea.2006.09.005
[20] S.N. Alam, Synthesis and characterization of W–Cu nanocomposites developed by mechanical alloying, Materials Science and Engineering A 433 (2006) 161–168. https://doi.org/10.1016/j.msea.2006.06.049
[21] B.S. Murty, S. Ranganathan, Novel materials synthesis by mechanical alloying/milling, Int. Mater. Rev. 43 (1998) 101–141. https://doi.org/10.1179/imr.1998.43.3.101
[22] T.R. Malow, C.C. Koch, Mechanical properties in tension of mechanically attrited nanocrystalline iron by the use of the miniaturized disk bend test, Acta Mater. 46(18) (1998) 6459–6473. https://doi.org/10.1016/S1359-6454(98)00294-8
[23] M. Lungu, V. Tsakiris, E. Enescu, et al., Development of W-Cu-Ni Electrical Contact Materials with Enhanced Mechanical Properties by Spark Plasma Sintering Process Acta Physica Polonica A, 125 (2014) 327-330.
[24] M. Kaszuba, D. McKnight, M.T. Connah, et al., Measuring sub nanometre sizes using dynamic light scattering, J. Nanopart. Res. 10 (2008) 823. https://doi.org/10.1007/s11051-007-9317-4