Fullerenes and its Composites


Fullerenes and its Composites

P. Senthil Kumar, G. Janet Joshiba, Abishek Sankaranarayan

The evolution in the nanotechnology has created an immense enthusiasm for utilization of composites of fullerenes in various industrial applications. Fullerene is one of the greatest achievement and remarkable advancement in material sciences. In recent times they have pulled the significant consideration of diverse industrial domains. Due to their remarkable physicochemical feature, they serve as an important material in the manufacture of various gadgets, medicines, and materials. They show an extensive variety of unique mechanical and electrical properties. The smallest size and the unique structure of the fullerene make it exhibit extensive electric, magnetic, optical, structural, mechanical and chemical characteristics. This chapter deals with the characteristic and function of fullerenes and their composites.

Fullerenes, Composites, Physicochemical Feature, Unique Structure

Published online 11/20/2018, 18 pages

DOI: http://dx.doi.org/10.21741/9781945291975-4

Part of the book on Carbonaceous Composite Materials

[1] E. Kantar, Superconductivity-like phenomena in an ferrimagneticendohedral fullerene with diluted magnetic surface, in: A. Pinczuk, Solid State Communications, Elsevier Ltd, New York, 2017, pp. 31-37. https://doi.org/10.1007/s10853-009-4187-z
[2] S. Yoshimoto, J. Amano, K. Miura, Synthesis of a fullerene/expanded graphite composite and its lubricating properties, J Mater Sci. 45 (2010) 1955–1962.
[3] E. Ulloa, Fullerenes and their Applications in Science and Technology. Introduction to Nanotechnology. Spring 2013.
[4] S. B. Singh, A. Singh, The Third Allotrope of Carbon: Fullerene and update, Int J Chemtech Res. 5 (2013) 167-17.
[5] S. Duri, A. L. Harkins, A. J. Frazier, C. D. Tran, Composites Containing Fullerenes and Polysaccharides: Green and Facile Synthesis, Biocompatibility, and Antimicrobial Activity, ACS Sustainable Chem. Eng., 5 (2017) 5408–5417. https://doi.org/10.1021/acssuschemeng.7b00715
[6] P. Hebgen, A. Goel, J. B. Howard, L. C. Rainey, J. B. V. Sande, Synthesis of fullerenes and fullerenic nanostructures in a low- pressure benzene/ oxygen diffusion flame, Proceedings of the Combustion Institute, 28 (2000) 1397–1404. https://doi.org/10.1016/S0082-0784(00)80355-0
[7] M. Safdar, Fullerene: Its definition, types and scope, 2010, Biotech articles, Retrieved from: https://www.biotecharticles.com/Nanotechnology-Article/Fullerene-Its-Definition-Types-and-Scope-469.
[8] B.C. Yadav, R. Kumar, Structure, properties and applications of fullerenes, Int J Nanotechnol Appl. 2 (2008) 15–24.
[9] M. Mojica, J. A. Alonso, F. Mendeza, Synthesis of fullerenes, J. Phys. Org. Chem. 26 (2013) 526–539. https://doi.org/10.1002/poc.3121
[10] A. Goel, P. Hebgen, J. B. V. Sande, J. B. Howard, Combustion synthesis of fullerenes and fullerenic nanostructures, Carbon, 40 (2002), Pages 177-182. https://doi.org/10.1016/S0008-6223(01)00170-1
[11] K. Koziol, B. O. Boskovic, N. Yahya, Synthesis of Carbon Nanostructures by CVD Method, in: N. Yahya, N. Yahya (ed.), Carbon and Oxide Nanostructures, Adv Struct Mater 5, Springer, Verlag Berlin Heidelberg, 2010, 23-49.
[12] Y. Yang, X. Liu, Y. Han, W. Ren, B. Xu, Ferromagnetic Property and Synthesis of Onion-Like Fullerenes by Chemical Vapor Deposition Using Fe and Co Catalysts Supported on NaCl, J Nanomater, 2011 (2011). https://doi.org/10.1155/2011/720937
[13] L. T. Scott, Methods for the Chemical Synthesis of Fullerenes, Angew. Chem. Int. Ed. 43 (2004) 4994 – 5007. https://doi.org/10.1002/anie.200400661
[14] A. W. Jensen, S. R. Wilson, D. I. Schuster, Biological Applications of Fullerenes, Bioorganic Med. Chem. 4 (1996) 767-779. https://doi.org/10.1016/0968-0896(96)00081-8
[15] G. Brusatin and R. Signorini, Linear and nonlinear optical properties of fullerenes in solid state materials, J. Mater. Chem. 12 (2002) 1964–1977. https://doi.org/10.1039/b202399g
[16] P. Prasanthi, G. S. Rao and B. U. Gowd, Mechanical Behavior of Fullerene Reinforced Fiber Composites with Interface Defects through Homogenization Approach and Finite Element Method, ISSN: 2005-4238 IJAST, 78 (2015) 67-82.
[17] A. Zettl and J. Cunnings, Elastic properties of fullerenes, in: M. Levy, H. Bass, R. Stern, Handbook of Elastic Properties of Solids, Liquids, and Gases, Academic press, 2001. https://doi.org/10.1016/B978-012445760-7/50037-X
[18] H. Kuzmany, J. Winter, Vibrational properties of fullerenes and fullerides, in: W. Andreon, The Physics of Fullerene-Based and Fullerene-Related Material, springer, 2000.
[19] M.S. Dresselhaus, G. Dresselhaus, Fundamental Properties of Fullerenes, in: P. C. Eklund, A. M. Rao, Fullerene Polymers and Fullerene Polymer Composites, Springer, Verlag Berlin Heidelberg.
[20] D. Jonsson, P. Norman, K. Ruud, H. A. Gren, T. Helgaker, Electric and magnetic properties of fullerenes, J. Chem. Phys.109 (1998). https://doi.org/10.1063/1.476593
[21] T.L. Makarova, B. Sundqvist, P. Scharff, M.E. Gaevski, E. Olsson, V.A. Davydov, A.V. Rakhmanina, L.S. Kashevarova, Electrical properties of two-dimensional fullerene matrices, Carbon 39 (2001) 2203–2209. https://doi.org/10.1016/S0008-6223(01)00036-7
[22] F. Gardea, D. C. Lagoudas, Characterization of electrical and thermal properties of carbon nanotube/epoxy composites, Composites: Part B. 56 (2014) 611–620. https://doi.org/10.1016/j.compositesb.2013.08.032
[23] T. L. Makarova, Magnetic Properties of Carbon Structures, Semiconductors, 38 (2004) 615–638. https://doi.org/10.1134/1.1766362
[24] P. Prasanthi, G. S. Rao, B. U. Gowd, Effectiveness of Buckminster Fullerene Reinforcement on Mechanical Properties of FRP Composites, Procedia Materials Science, 3rd International Conference on Materials Processing and Characterisation (ICMPC 2014), 6 ( 2014 ) 1243 – 1252.
[25] T. Saotome, K. Kokubo, S. Shirakawa, T. Oshima, H.T. Hahn, Polymer nanocomposites reinforced with C60 fullerene: effect of hydroxylation, J. Compos. Mater.45(25) 2595–2601. https://doi.org/10.1177/0021998311416682