Molecular Dynamics Simulation of Capped Single Walled Carbon Nanotubes and their Composites


Molecular Dynamics Simulation of Capped Single Walled Carbon Nanotubes and their Composites

Sumit Sharma, Mandeep Singh

Molecular dynamics simulation has been used to study the effect of capping carbon nanotubes (CNT) with hemispherical caps on mechanical properties of CNTs. Simulation has also been performed for studying the effect of volume fraction (Vf) on the mechanical properties of CNT reinforced poly methyl metha-acrylate (PMMA) composites. Materials Studio 8.1 has been used as a tool for finding the longitudinal (E11), transverse (E22) and shear moduli of the composites. Results show that capped CNTs have lower moduli in comparison to the uncapped CNTs. Adding CNTs into PMMA increases E11 till Vf of 12%.

Carbon Nanotube, Mechanical Properties, Elasticity, Molecular Dynamics, Polymer

Published online 11/20/2018, 36 pages


Part of the book on Carbonaceous Composite Materials

[1] H.W. Kroto, J.R.Heath, S.C.O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985) 162-163.
[2] P.R. Wallace, The band theory of graphite, Phys. Rev., 71 (1947) 622-634.
[3] R. E. Smalley, Formation and properties of C60 and the fullerenes, National Institute of Standards and Technology (1990) Dec. 6-7.
[4] M. S. Dresselhaus, Oral presentation at fullerene workshop, University of Pennsylvania (1991).
[5] S.Iijima, Helical microtubules of graphitic carbon, Nature354 (1991)56-58.
[6] R.Bacon, Growth, structure, and properties of graphite whiskers, J. Appl. Phys. 31 (1960) 283-290.
[7] M.Endo, A.Oberlin, T. Koyama, Filamentous growth of carbon through benzene decomposition, J. Cryst Growth. 32 (1976) 335-349.
[8] L.G. Zhou and S.Q. Shi, Molecular dynamic simulation on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen, Comput. Mater. Sci.23 (2002) 166-174.
[9] M.Griebeland J.Hamaekers, Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites,Comput. Methods Appl. Mech. Eng.193 (2003) 1773-1788.
[10] M.Parrinello and A.Rahman, Crystal structure and pair potentials: A Molecular dynamics study, Phys. Rev. Lett. 45 (1980) 1196-1199.
[11] K.Mylvaganam and L.C. Zhang, Important issues in a molecular dynamics simulation for characterizing the mechanical properties of carbon nanotubes, Carbon 42 (2004) 2025-2032.
[12] X. Zhou,E. Shin,K. Wang, C.Bakis, Interfacial damping characteristics of carbonnanotube-based composites, Compos.Sci. Technol.64 (2004) 2425-2437.
[13] W.X.Bao, C.C. Zhu, W.Z. Cui, Simulation of Young’s modulus of single walled carbon nanotubes by molecular dynamics, Physica B. 352 (2004) 156-163.
[14] X.L. Gao and K. Li,A shear-lag model of carbon nanotube-reinforced polymer composites, Int. J. Solids Struct.42 (2005)1649-1667.
[15] C.Deng, D. Wang, X. Zhang, Damping characteristics of carbon nanotube reinforced aluminum composite, Mater. Lett.61 (2006) 3229-3231.
[16] A. Adnan, C.T. Sun, H. Mahfuz, A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites, Compos. Sci. Technol. 67 (2007) 348-356.
[17] Y. Han and J.Elliott, Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Comput.Mater. Sci. 39 (2006) 315-323.
[18] V.V.Mokashi, D.Qian, Y. Liu, A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics, Compos. Sci. Technol. 67 (2007) 530-540.
[19] J. Cho and C. Sun, A molecular dynamics simulation study of inclusion size effect on polymeric nanocomposites, Comput. Mater. Sci.41 (2007) 54-62.
[20] L.H. Gan and J.Q. Zhao, Theoretical investigation of (5,5), (9,0) and (10,10) closed SWCNTs, Physica E:Low Dimens. Syst. Nanostruct.41 (2009) 1249-1252.
[21] M.D.Ganji, A. Fereidoon, M.Jahanshahi, M.G.Ahangari (2012),Elastic properties of SWCNTs with curved morphology: Density functional tight binding based treatment, Solid State Commun.152 (2012) 1526-1530.
[22] A.Fereidoon, M.Jahanshahi, M.G. Ahangari, M.D. Ganji, Density functional theory investigation of the mechanical properties of single-walled carbon nanotubes, Comput. Mater. Sci.53(2012) 377-381.
[23] F.Gao, J.Qu, M. Yao,Electrical resistance at carbon nanotube/copper interfaces: Capped versus open-end carbon nanotube, Mater. Lett.82 (2012) 184-187.
[24] S.Haghighatpanah and K. Bolton, Molecular-level computational studies of single wall carbon nanotube–polyethylene composites, Comput. Mater. Sci. 69 (2013) 443–454.
[25] B.Jeong and H. Kim, Molecular dynamics simulations of the failure behaviors of closed carbon nanotubes fully filled with C60 fullerenes, Comput. Mater. Sci. 77 (2013) 7–12.
[26] M.Mahboob andM.Z. Islam,Molecular dynamics simulations of defective CNT-polyethylene composite systems, Comput. Mater. Sci. 79 (2013) 223-229.
[27] X.Shao, H.Luo, J.Cai, C.Dong,First-principles study of single atom adsorption on capped single-walled carbon nanotubes, Int. J. Hydrogen Energy39 (2014) 10161-10168.
[28] S.Sharma, R.Chandra, P.Kumar, N.Kumar,Effect of Stone-Wales and vacancy defects on elastic moduli of carbon nanotubes and their composites using molecular dynamics simulation, Comput. Mater. Sci. 86 (2014) 1-8.
[29] S.Sharma, R.Chandra, P.Kumar, N.Kumar,Molecular dynamics simulation of polymer/carbon nanotube composites, Acta Mech. Solida Sin. 28 (2015) 409-419.
[30] R.J. Swenson, Comments on virial theorems for bounded systems, Am. J. Phys.51 (1983) 940-942.
[31] R. Christensen, Mechanics of composite materials, Krieger Publishing Company, Malbar, Fl, (1991) 74.