Comparing the Influence of Residual Stresses in Bearing Fatigue Life at Line and Point Contact

Comparing the Influence of Residual Stresses in Bearing Fatigue Life at Line and Point Contact

T. Coors, F. Pape, G. Poll

download PDF

Abstract. The targeted insertion of compressive residual stresses can positively influence the fatigue life of rolling element bearings. Adapted manufacturing processes such as hard turning and deep rolling can help optimising the subsurface residual stress state of these machine elements, which also improves the surface quality of the bearings raceway. In this contribution, a numerical calculation method was developed to predict the influence of residual stresses on bearing fatigue life. By means of a finite element analysis, the component stresses due to the rolling contact load can be determined. The resulting shear stresses find input in a bearing fatigue life calculation based on the approach of IOANNIDES, BERGLING and GABELLI. This statistically based method refers a material-dependent stress fatigue limit to a local stress related fatigue criterion, which is influenced by the residual stress condition. On this basis, the influence of residual stresses on two different bearing types is investigated. Line contact is represented by a cylindrical roller bearing and an angular contact ball bearing is chosen to investigate the point contact. For angular contact ball bearings, a rolling motion is superimposed by a drilling movement perpendicular to the contact plane, which is caused by the kinematics of the rolling element. The calculation method is used for bearings made of classic bearing steel and bearings made of two different steels by tailored forming in order to regard the residual stress conditions of different manufacturing types. It can be shown that the influence of residual stresses on bearing fatigue life is higher for bearings with line contact than for bearings with point contact.

Residual Stress, Bearing Fatigue Life, Tailored Forming

Published online 9/11/2018, 6 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: T. Coors, F. Pape, G. Poll, ‘Comparing the Influence of Residual Stresses in Bearing Fatigue Life at Line and Point Contact’, Materials Research Proceedings, Vol. 6, pp 215-220, 2018


The article was published as article 34 of the book Residual Stresses 2018

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] W. Steinhilper, B. Sauer (Eds.), Konstruktionselemente des Maschinenbaus 2, 7th ed., Springer Vieweg, Berlin Heidelberg, (2012).
[2] T. Coors, F. Pape, G. Poll, Concept for enhancing machine elements by residual stresses and tailored forming, Proceedings of IAMOT 2017, ISBN: 978-3-200-04986-4, (2017) 2040 – 2050.
[3] F. Pape, T. Neubauer, O. Maiß , B. Denkena, G. Poll, Influence of Residual Stresses Introduced by Manufacturing Processes on Bearing Endurance Time. Tribology Letters, 66(205), (2017) 65 – 70.
[4] A.P. Voskamp, Rolling Contact Fatigue and the Significance of Residual Stresses, Deutsche Gesellschaft für Metallkunde, Proceedings: Residual Stresses in Science and Technology (1987) 713-720.
[5] T.A. Harris, M.A. Ragen, R.F. Spitzer, The Effect of Hoop and Material Residual Stresses on the Fatigue Life of High Speed, Rolling Bearings, Tribology Transactions, 35:1, (1992) 194-198.
[6] T. Neubauer, Betriebs- und Lebensdauerverhalten hartgedrehter und festgewalzter Zylinderrollenlager, Phd. Thesis, Leibniz Universität Hannover, (2016).
[7] Mildebrath, M.; Blohm, T.; Hassel, T.; Stonis, M.; Langner, J.; Maier, H. J.; Behrens, B.-A. Influence of Cross Wedge Rolling on the Coating Quality of Plasma-Transferred Arc Deposition Welded Hybrid Steel Parts, International Journal of Emerging Technology and Advanced Engineering, (2017).
[8] H.J. Fahrenwaldt, V. Schuler (Eds.), Praxiswissen Schweißtechnik. Werkstoffe, Prozesse, Fertigung, Vieweg+Teubner Verlag, Wiesbaden, (2009).
[9] H. Hertz, Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik, Berlin, (1881) 156-171.
[10] G. Poll, L. Deters, Lagerungen, Gleitlager, Wälzlager. in Konstruktionselemente des Maschinenbaus 2, W. Steinhilper, B. Sauer (eds.), Springer (2008).
[11] F. Pape, O. Maiß, G. Poll, B. Denkena, Reibungsminderung bei Wälzlagern und Gleichlaufgelenken durch eine innovative Hartbearbeitung. In: Sonderband Abschlußkol-loquium „Ressourceneffiziente Konstruktionselemente“ SPP 1551, 58. Tribologie-Fach-tagung 2017, Goettingen, (2017) 21 – 37.
[12] E. Ioannides, T.A. Harris, A New Fatigue Life Model for Rolling Bearings. ASME Journal of Tribology, 107(3), (1985) 367–377.
[13] E. Ioannides, G. Bergling, A. Gabelli, An analytical formulation for the life of rolling bearings, Acta Polytechnica Scandinavica, Mechanical engineering series No. 137, (1999).
[14] K. Dang Van, B. Griveau, O. Message, On a New Mulitiaxial Fatigue Criterion: Theory and Application. In: Mechanical Engineering Publications, (1989) 479–496.
[15] T. Coors, F. Pape, G. Poll, Enhancing Machine Elements by Residual Stresses, Optimized Surfaces and Tailored Forming. In: Proceedings, 21st International Colloquium Tribology, TAE, Esslingen, (2018) 277-278.
[16] F. Pape, T. Coors, Y. Wang, G. Poll, Fatigue life calculation of load-adapted hybrid angular contact ball bearings, Lecture Notes in Mechanical Engineering, Springer, doi: 10.1007/978-981-13-0411-8_36, (2018).