Conductive Thermoset Composites


Conductive Thermoset Composites

Halima Khatoon, Sajid Iqbal, Sharif Ahmad

Conductive thermoset composites (CTC) have gained much attention among scientists and technologists due to their excellent electrical, mechanical, and thermal properties. These properties of CTC make them a superior candidate in various applications like EMI shielding, anti-corrosive coatings, electronic packaging, LED’s, etc. In view of this, the present chapter highlights the significance of CTC along with the historical background of some important thermoset polymers, different types of CTC and their methods of synthesis. In addition to this, the applications of CTC are described. Moreover, the problems associated with CTC and their solutions are discussed in detail.

Thermoset Polymers, Conductive Fillers, Composites, Properties, Applications

Published online 10/1/2018, 28 pages


Part of the book on Thermoset Composites

[1] Hassan Namazi, Polymers in our daily life, Bioimpact. 7 (2017) 73–74.
[2] R.J.J.W. Jean-Pierre Pascault, Henry Sautereau, Jacques Verdu, 2002 Thermosetting polymers, New york, CRC.
[3] Thermoset Composites – An Introduction, (2001) 1–3.
[4] A. Dotan, Biobased Thermosets, (2013), Handbook of thermoset plastics, Elsevier Inc.,800.
[5] V.K. Thakur, M.K. Thakur, Processing and characterization of natural cellulose fibers/thermoset polymer composites, Carbohydr. Polym. 109 (2014) 102–117.
[6] O. Zabihi, A. Khodabandeh, S.M. Mostafavi, Preparation, optimization and thermal characterization of a novel conductive thermoset nanocomposite containing polythiophene nanoparticles using dynamic thermal analysis, Polym. Degrad. Stab. 97 (2012) 3–13.
[7] R. Rohini, P. Katti, S. Bose, Tailoring the interface in graphene/thermoset polymer composites: A critical review, Polym. 70 (2015) A17–A34.
[8] O. Shepelev, S. Kenig, H. Dodiuk, Nanotechnology Based Thermosets, Third Edit, Elsevier Inc., 2013.
[9] C. Li, H. Bai, G. Shi, Conducting polymer nanomaterials: electrosynthesis and applications., Chem. Soc. Rev. 38 (2009) 2397–2409.
[10] H. Dodiuk, S.H. Goodman, Introduction, Handb. Thermoset Plast. (2013) 1–12.
[11] H. Ishida, overview and historical background of polybenzoxazine research, in: Handb. Benzoxazine Resins, 2011: pp. 3–69.
[12] I.H. Updegraff, Unsaturated Polyester Resins, in: Handb. Compos., Springer, Boston, MA, 1982, 17-37.
[13] Sharif Ahmad, S.M. Ashraf, E. Sharmin, F. Zafar, Studies on ambient cured polyurethane modified epoxy coatings synthesized from a sustainable resource, Prog. Cryst. Growth Charact. Mater. 45 (2002) 83–88.
[14] W. Brostow, S.H. Goodman, J. Wahrmund, Epoxies, Handbook of Thermoset Plastics 2014.
[15] J.M. Sadler, F.R. Toulan, G.R. Palmese, J.J. La Scala, Unsaturated polyester resins for thermoset applications using renewable isosorbide as a component for property improvement, J. Appl. Polym. Sci. 132 (2015) 1–11.
[16] A. Kandelbauer, G. Tondi, O.C. Zaske, S.H. Goodman, Unsaturated Polyesters and Vinyl Esters, Third Edit, Elsevier Inc., 2013, 111-172.
[17] C. Zhang, Y. Li, R. Chen, M.R. Kessler, Polyurethanes from Solvent-Free Vegetable Oil-Based Polyols, ACS Sus. Chem. Engg. 10 (2014) 2465-2476.
[18] H. Janik, M. Sienkiewicz, J. Kucinska-Lipka, Polyurethanes, Handbook of thermoset plastics, Elsevier Inc., Waltham MA, 2014.
[19] I.H. Hathaikarn Manuspiya, Polybenzoxaines-based composites for increased dielectric constant, in: Handb. Benzoxazine Resins, 2011: pp. 621–637.
[20] M. Biron, Thermoset and composite, Elsevier Ltd., Brooklyn NY USA 2003, 560.
[21] W. Qin, F. Vautard, L.T. Drzal, J. Yu, Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber-matrix interphase, Compos. Part B Eng. 69 (2015) 335–341.
[22] T. Ogasawara, S.Y. Moon, Y. Inoue, Y. Shimamura, Mechanical properties of aligned multi-walled carbon nanotube/epoxy composites processed using a hot-melt prepreg method, Compos. Sci. Technol. 71 (2011) 1826–1833.
[23] N. Wu, X. She, D. Yang, X. Wu, F. Su, Y. Chen, Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite, J. Mater. Chem. 22 (2012) 17254.
[24] R. Auvergne, S. Caillol, G. David, B. Boutevin, J.P. Pascault, Biobased thermosetting epoxy: Present and future, Chem. Rev. 114 (2014) 1082–1115.
[25] S. Zhao, M.M. Abu-Omar, Synthesis of Renewable Thermoset Polymers through Successive Lignin Modification Using Lignin-Derived Phenols, ACS Sustain. Chem. Eng. 5 (2017) 5059–5066.
[26] X.Q. and Y.H. Chenlu Bao, Yuqiang Guo, Lei Song, Yongchun Kan, In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements, J. Mater. Chem. 21 (2011) 13290–13298.
[27] C.S. Triantafillidis, P.C. LeBaron, T.J. Pinnavaia, Thermoset epoxy-clay nanocomposites: The dual role of α,ω-diamines as clay surface modifiers and polymer curing agents, J. Solid State Chem. 167 (2002) 354–362.
[28] L. V. Karabanova, R.L.D. Whitby, V.A. Bershtein, A. V. Korobeinyk, P.N. Yakushev, O.M. Bondaruk, A.W. Lloyd, S. V. Mikhalovsky, The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane-multiwalled carbon nanotube composites at low filler contents, Colloid Polym. Sci. 291 (2013) 573–583.
[29] C. McClory, 1, T. McNally, 1, G.P. Brennan, 2, J. Erskine, Thermosetting Polyurethane Multiwalled Carbon Nanotube Composites, J. Appl. Polym. Sci. 105 (2007) 1003–1011.
[30] B. Berns, H. Deligöz, B. Tieke, F. Kremer, Conductive composites of polyurethane resins and ionic liquids, Macromol. Mater. Eng. 293 (2008) 409–418.
[31] D. Jaaoh, C. Putson, N. Muensit, Enhanced strain response and energy harvesting capabilities of electrostrictive polyurethane composites filled with conducting polyaniline, Compos. Sci. Technol. 122 (2016) 97–103.
[32] H. Khatoon, S. Ahmad, A Review on Conducting Polymer Reinforced Polyurethane Composites, J. Ind. Eng. Chem. 53 (2017) 1-22.
[33] F.Q. Yang, Y.F. Jin, X. Qian, Simulation of Thermal Conductivity of Sandwich Composite, Appl. Mech. Mater. 278-280 (2013) 523–526.
[34] C. Bora, P. Bharali, S. Baglari, S.K. Dolui, B.K. Konwar, Strong and conductive reduced graphene oxide/polyester resin composite films with improved mechanical strength, thermal stability and its antibacterial activity, Compos. Sci. Technol. 87 (2013) 1–7.
[35] K.S. Santhosh Kumar, C.P. Reghunadhan Nair, Polybenzoxazine-new generation phenolics, Handb. Thermoset Plast. (2013) 45–73.
[36] S. Matsumura, A.R. Hlil, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft, A.S. Hay, Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end-groups: Novel branched poly(ether-ketone)s, Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem. 49 (2008) 511–512.
[37] H. Ishida, S. Rimdusit, Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine, Thermochim. Acta. 320 (1998) 177–186.
[38] Y.H. Wang, C.M. Chang, Y.L. Liu, Benzoxazine-functionalized multi-walled carbon nanotubes for preparation of electrically-conductive polybenzoxazines, Polymer (Guildf). 53 (2012) 106–112.
[39] X. S. Yi, G. Wu, Y. Pan, Properties and applications of filled conductive polymer composites, Polym. Int. 44 (1997) 117–124.<117::AID-PI811>3.0.CO;2-L.
[40] G. Boiteux, J. Fournier, D. Issotier, G. Seytre, G. Marichy, Conductive thermoset composites: PTC effect, Synth. Met. 102 (1999) 1234–1235.
[41] K. Joseph, S. Varghese, G. Kalaprasad, S. Thomas, L. Prasannakumari, P. Koshy, C. Pavithran, Influence of interfacial adhesion on the mechanical properties and fracture behaviour of short sisal fibre reinforced polymer composites, Eur. Polym. J. 32 (1996) 1243–1250.
[42] M. Naebe, J. Wang, A. Amini, H. Khayyam, N. Hameed, L.H. Li, Y. Chen, B. Fox, Mechanical Property and Structure of Covalent Functionalised Graphene/Epoxy Nanocomposites, Sci. Rep. 4 (2014) 1–7.
[43] J.F. Feller, I. Linossier, Y. Grohens, Conductive polymer composites: Comparative study of poly(ester)-short carbon fibres and poly(epoxy)-short carbon fibres mechanical and electrical properties, Mater. Lett. 57 (2002) 64–71.
[44] T. Yokozeki, T. Goto, T. Takahashi, D. Qian, S. Itou, Y. Hirano, Y. Ishida, M. Ishibashi, T. Ogasawara, Development and characterization of CFRP using a polyaniline-based conductive thermoset matrix, Compos. Sci. Technol. 117 (2015) 277–281.
[45] O. Zabihi, Preparation and characterization of toughened composites of epoxy/poly(3,4-ethylenedioxythiophene) nanotube: Thermal, mechanical and electrical properties, Compos. Part B Eng. 45 (2013) 1480–1485.
[46] B. Redondo-Foj, P. Ortiz-Serna, M. Carsí, M.J. Sanchis, M. Culebras, C.M. Gómez, A. Cantarero, Electrical conductivity properties of expanded graphite-polycarbonatediol polyurethane composites, Polym. Int. 64 (2015) 284–292.
[47] M. Verma, S.S. Chauhan, S.K. Dhawan, V. Choudhary, Graphene nanoplatelets/carbon nanotubes/polyurethane composites as efficient shield against electromagnetic polluting radiations, Compos. Part B Eng. 120 (2017) 118–127.
[48] N. Yamamoto, R. Guzman de Villoria, B.L. Wardle, Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes, Compos. Sci. Technol. 72 (2012) 2009–2015.
[49] X. Zhao, Y. Li, J. Wang, Z. Ouyang, J. Li, G. Wei, Z. Su, Interactive oxidation-reduction reaction for the in situ synthesis of graphene-phenol formaldehyde composites with enhanced properties, ACS Appl. Mater. Interfaces. 6 (2014) 4254–4263.
[50] E. Ivanov, R. Kotsilkova, E. Krusteva, E. Logakis, A. Kyritsis, P. Pissis, C. Silvestre, D. Duraccio, M. Pezzuto, Effects of processing conditions on rheological, thermal, and electrical properties of multiwall carbon nanotube/epoxy resin composites, J. Polym. Sci. Part B Polym. Phys. 49 (2011) 431–442.
[51] F.Y. Yuan, H. Bin Zhang, X. Li, H.L. Ma, X.Z. Li, Z.Z. Yu, In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites, Carbon N. Y. 68 (2014) 653–661.
[52] Q. Li, L. Chen, X. Li, J. Zhang, X. Zhang, K. Zheng, F. Fang, H. Zhou, X. Tian, Effect of multi-walled carbon nanotubes on mechanical, thermal and electrical properties of phenolic foam via in-situ polymerization, Compos. Part A Appl. Sci. Manuf. 82 (2016) 214–225.
[53] I.S. Gunes, G.A. Jimenez, S.C. Jana, Carbonaceous fillers for shape memory actuation of polyurethane composites by resistive heating, Carbon N. Y. 47 (2009) 981–997.
[54] N.J. Yi Wang, Jinhong Yu, Wen Dai, Yingze Song, Dong Wang, Liming Zeng, Enhanced Thermal and Electrical Properties of Epoxy Composites Reinforced With Graphene Nanoplatelets, Polym. Compos. 36 (2015) 556–565.
[55] S. Iqbal, S. Ahmad, Recent development in hybrid conducting polymers: Synthesis, applications and future prospects, J. Ind. Eng. Chem. 60 (2017) 53–84.
[56] N.M. Barkoula, B. Alcock, N.O. Cabrera, T. Peijs, Fatigue properties of highly oriented polypropylene tapes and all-polypropylene composites, Polym. Polym. Compos. 16 (2008) 101–113.
[57] Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, Y. Chen, Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites, Carbon N. Y. 45 (2007) 821–827.
[58] Y. Huang, N. Li, Y. Ma, F. Du, F. Li, X. He, X. Lin, H. Gao, Y. Chen, The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites, Carbon N. Y. 45 (2007) 1614–1621.
[59] J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Electromagnetic interference shielding of graphene/epoxy composites, Carbon N. Y. 47 (2009) 922–925.
[60] A.S. Hoang, Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyurethane composite films, Adv. Nat. Sci. Nanosci. Nanotechnol. 2 (2011).
[61] T.K. Gupta, B.P. Singh, S. Teotia, V. Katyal, S.R. Dhakate, R.B. Mathur, Designing of multiwalled carbon nanotubes reinforced polyurethane composites as electromagnetic interference shielding materials, J. Polym. Res. 20 (2013) 32–35.
[62] M. Verma, P. Verma, S.K. Dhawan, V. Choudhary, Tailored graphene based polyurethane composites for efficient electrostatic dissipation and electromagnetic interference shielding applications, RSC Adv. 5 (2015) 97349–97358.
[63] J. Alam, U. Riaz, S. Ahmad, High performance corrosion resistant polyaniline/alkyd ecofriendly coatings, Curr. Appl. Phys. 9 (2009) 80–86.
[64] A. Mostafaei, F. Nasirpouri, Epoxy/polyaniline–ZnO nanorods hybrid nanocomposite coatings: Synthesis, characterization and corrosion protection performance of conducting paints, Prog. Org. Coatings. 77 (2014) 146–159.
[65] J. Zhu, S. Wei, I.Y. Lee, S. Park, J. Willis, N. Haldolaarachchige, D.P. Young, Z. Luo, Z. Guo, Silica stabilized iron particles toward anti-corrosion magnetic polyurethane nanocomposites, RSC Adv. 2 (2012) 1136–1143.
[66] H. Wei, D. Ding, S. Wei, Z. Guo, Anticorrosive conductive polyurethane multiwalled carbon nanotube nanocomposites, J. Mater. Chem. A. 1 (2013) 10805.
[67] Z. Zhang, W. Zhang, D. Li, Y. Sun, Z. Wang, C. Hou, L. Chen, Y. Cao, Y. Liu, Mechanical and anticorrosive properties of graphene/epoxy resin composites coating prepared by in-situ method, Int. J. Mol. Sci. 16 (2015) 2239–2251.
[68] A.G. and S.A. Neha Kanwar Rawat, Influence of microwave irradiation on various properties of nanopolythiophene and their anticorrosive nanocomposite coatings, RSC Adv. (2014) 1–12.
[69] Q. Meng, J. Hu, A review of shape memory polymer composites and blends, Compos. Part A Appl. Sci. Manuf. 40 (2009) 1661–1672.
[70] J.W.C. Nanda Gopal Sahoo, Yong Chae Jung, Nam Seo Goo, Conducting Shape Memory Polyurethane-Polypyrrole Composites for an Electroactive Actuator, Macromol. Mater. Eng. (2005) 1049–1055.
[71] S.M. Oh, K.M. Oh, T.D. Dao, H. Il Lee, H.M. Jeong, B.K. Kim, The modification of graphene with alcohols and its use in shape memory polyurethane composites, Polym. Int. 62 (2013) 54–63.
[72] M. Raja, S.H. Ryu, A.M. Shanmugharaj, Thermal , mechanical and electroactive shape memory properties of polyurethane ( PU )/ poly ( lactic acid ) ( PLA )/ CNT nanocomposites, Eur. Polym. J. 49 (2013) 3492–3500.
[73] H. Lu, Y. Yao, W. Min, J. Leng, D. Hui, Composites : Part B Significantly improving infrared light-induced shape recovery behavior of shape memory polymeric nanocomposite via a synergistic effect of carbon nanotube and boron nitride, Compos. PART B. 62 (2014) 256–261.
[74] X. Lu, G. Xu, Thermally Conductive Polymer Composites for Electronic Packaging, J. Appl. Polym. Sci. 65 (1997) 2733–2738.;2-Y.
[75] J. Lu, K.S. Moon, B.K. Kim, C.P. Wong, High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications, Polymer (Guildf). 48 (2007) 1510–1516.
[76] L. Du, S.C. Jana, Highly conductive epoxy/graphite composites for bipolar plates in proton exchange membrane fuel cells, J. Power Sources. 172 (2007) 734–741.
[77] S. Pramanik, J. Hazarika, A. Kumar, N. Karak, Castor Oil Based Hyperbranched Poly ( ester amide )/ Polyaniline Nano fi ber Nanocomposites as Antistatic Materials, Ind. Eng. Chem. Res. 52 (2013) 5700–5707.
[78] E.C. Cho, J.H. Huang, C.P. Li, C.W. Chang-Jian, K.C. Lee, Y.S. Hsiao, J.H. Huang, Graphene-based thermoplastic composites and their application for LED thermal management, Carbon N. Y. 102 (2016) 66–73.
[79] Y. Zhang, A.A. Broekhuis, F. Picchioni, Thermally self-healing polymeric materials: The next step to recycling thermoset polymers?, Macromolecules. 42 (2009) 1906–1912.
[80] M.M. Obadia, B.P. Mudraboyina, A. Serghei, D. Montarnal, E. Drockenmuller, Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds, J. Am. Chem. Soc. 137 (2015) 6078–6083.
[81] J. Palmer, O.R. Ghita, L. Savage, K.E. Evans, Successful closed-loop recycling of thermoset composites, Compos. Part A Appl. Sci. Manuf. 40 (2009) 490–498.
[82] S.J. Pickering, Recycling Technologies For Thermoset Composite Materials, Adv. Polym. Compos. Struct. Appl. Constr. ACIC 2004. 37 (2004) 392–399.
[83] C.E. Kouparitsas, C.N. Kartalis, P.C. Varelidis, C.J. Tsenoglou, C.D. Papaspyrides, Recycling of the fibrous fraction of reinforced thermoset composites, Polym. Compos. 23 (2002) 682–689.
[84] A. Torres, I. De Marco, B.M. Caballero, M.F. Laresgoiti, J.A. Legarreta, M.A. Cabrero, A. González, M.J. Chomón, K. Gondra, Recycling by pyrolysis of thermoset composites: characteristics of the liquid and gaseous fuels obtained, Fuel. 79 (2000) 897–902.
[85] S.J. Pickering, R.M. Kelly, J.R. Kennerley, C.D. Rudd, N.J. Fenwick, A fluidised-bed process for the recovery of glass fibres from scrap thermoset composites, Compos. Sci. Technol. 60 (2000) 509–523.
[86] P. Xu, J. Li, J. Ding, Chemical recycling of carbon fibre/epoxy composites in a mixed solution of peroxide hydrogen and N,N-dimethylformamide, Compos. Sci. Technol. 82 (2013) 54–59.