Nano-Carbon/Polymer Composites for Electromagnetic Shielding, Structural Mechanical and Field Emission Applications

$20.00

Nano-Carbon/Polymer Composites for Electromagnetic Shielding, Structural Mechanical and Field Emission Applications

Ashwini P. Alegaonkar, Prashant S. Alegaonkar

Carbon material, due to their stability, forms a number of polymer composites compounds; useful for several applications. Herein, we discussed properties of poly urathene composite incorporated with graphene like nano carbon (GNCs) utilized for X-band EMI shielding. GNCs showed good mechanical and superior thermal properties, at very low fraction, when added with epoxy. Subsequently, utility of carbon nanotubes/nylon fibre spun by electro-spinning is discussed followed by field emission analysis of nanotubes/polymer prepared by different dispersion routes.

Keywords
EMI Shielding, GNC Epoxy Composite, Field Emission of CNT-Ploymer, CNT-Nylon Composite

Published online 10/1/2018, 61 pages

DOI: http://dx.doi.org/10.21741/9781945291876-6

Part of the book on Thermoset Composites

References
[1] A. Kumar, P. S. Alegaonkar, Impressive transmission mode electromagnetic interference shielding parameters of graphene-like nanocarbon/polyurethane nanocomposites for short range tracking countermeasures, ACS Appl. Mater. Interfaces, 7 (2015) 14833–42. https://doi.org/10.1021/acsami.5b03122
[2] D. K. Chouhan, S. K. Rath, A. Kumar, P. Alegaonkar, S. Kumar, G. Harikrishnan, T. U. Patro, Structure-reinforcement correlation and chain dynamics in graphene oxide and laponite-filled epoxy nanocomposites, J. Mater. Sci. 50 (2015) 7458-72. https://doi.org/10.1007/s10853-015-9305-5
[3] J. S. Jeong, S. Y. Jeon, T. Y. Lee, J. H. Park, J. H. Shin, P. S. Alegaonkar, A.S. Berdinsky, and J. B. Yoo, Fabrication of MWNTs/nylon conductive composite nanofibers by electrospinning, Diamond and related materials, 15 (2006) 1839-1843. https://doi.org/10.1016/j.diamond.2006.08.026
[4] J. H. Park, P. S. Alegaonkar, S. Y. Jeon, and J. B. Yoo, Carbon nanotube composite: Dispersion routes and field emission parameters. Composites Science and Technology, 68 (2008), 753-759. https://doi.org/10.1016/j.compscitech.2007.08.030
[5] P. P. Kuzhir, A. G. Paddubskaya, M. V. Shuba, S. A. Maksimenko, S. Bellucci, Electromagnetic shielding efficiency in Ka-band: carbon foam versus epoxy/carbon nanotube composites. J. Nanophoton 6(2012) 061715-20. https://doi.org/10.1117/1.JNP.6.061715
[6] R. Rohini, S. Bose, Electromagnetic interference shielding materials derived from gelation of multiwall carbon nanotubes in polystyrene/poly(methyl methacrylate) blends, ACS Appl. Mater. Interfaces 6 (2014)11302−10. https://doi.org/10.1021/am502641h
[7] S. Maiti, N. K. Shrivastava, S. Suin, B. Khatua, Polystyrene/ mwcnt/graphite nanoplate nanocomposites: efficient electro-magnetic interference shielding material through graphite nano-plate−MWCTs−graphite nanoplate networking, ACS Appl. Mater. Inter, 5(2013)4712−24. https://doi.org/10.1021/am400658h
[8] S. K. Rath, S. Dubey, G. S. Kumar, S. Kumar, A. Patra, J. Bahadur et al., Multi-walled cnt-induced phase behaviour of poly (vinylidene fluoride) and its electro-mechanical properties, J. Mater. Sci. 49 (2014)103−113. https://doi.org/10.1007/s10853-013-7681-2
[9] A. Singh A. Carbon nanotubes based nanocomposite for electromagnetic wave absorption and dynamic structural strain sensing. Ind. J. Pure Appl. Phys. 51(2013)439−43.
[10] S. H. Park, P. T. Theilmann, P. M. Asbeck, P. R. Bandaru, Enhanced electromagnetic interference shielding through the use of functionalized carbon-nanotube-reactive polymer composites, IEEE Trans. Nanotechnol. 9(2010)464−69. https://doi.org/10.1109/TNANO.2009.2032656
[11] M. H. Al-Saleh, W. H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study, Carbon 60(2013)146−56. https://doi.org/10.1016/j.carbon.2013.04.008
[12] M. Arjmand, T. Apperley, M. Okoniewski, U. Sundararaj, Comparative study of electromagnetic interference shielding proper-ties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites, Carbon 50(2012)5126−34. https://doi.org/10.1016/j.carbon.2012.06.053
[13] Y. Yang, M. C. Gupta, K. L. Dudley, R. W. Lawrence, Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding, Nano Lett., 5(2005)2131−34. https://doi.org/10.1021/nl051375r
[14] R. Kumar, S. R. Dhakate, T. Gupta, P. Saini, B. P. Singh, R. B. Mathur, Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes, J. Mater. Chem. A 1(2013) 5727−35. https://doi.org/10.1039/c3ta10604g
[15] B. Yuan, L. Yu L, L. Sheng, K. An, X. Zhao, Comparison of electromagnetic interference shielding properties between single- wall carbon nanotube and graphene sheet/polyaniline composites, J.Phys. D: Appl. Phys, 45 (2012) 235108-14. https://doi.org/10.1088/0022-3727/45/23/235108
[16] Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, et al. Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyur-ethane composites, Carbon 45 (2007)821−27. https://doi.org/10.1016/j.carbon.2006.11.020
[17] Y. Huang, N. Li, Y. Ma, F. Du, F. Li, X. He et al. The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites, Carbon 45(2007)1614−21. https://doi.org/10.1016/j.carbon.2007.04.016
[18] T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, J. H. Lee, Recent Advances in graphene based polymer composites, Prog. Polym. Sci. 35(2010)1350−75. https://doi.org/10.1016/j.progpolymsci.2010.07.005
[19] V. K. Singh, A. Shukla, M. K. Patra, L. Saini, R. K. Jani, S. R. Vadera, Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite, Carbon 50(2012)2202−08. https://doi.org/10.1016/j.carbon.2012.01.033
[20] J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai et al. Electromagnetic interference shielding of graphene/epoxy composites, Carbon 47(2009)922−25. https://doi.org/10.1016/j.carbon.2008.12.038
[21] V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Functionalized graphene−pvdf foam composites for EMI shielding, Macromol. Mater. Eng. 296(2011) 894−98. https://doi.org/10.1002/mame.201100035
[22] Z. Chen, C. Xu, C. Ma, W. Ren, H. M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(2013)1296− 1300. https://doi.org/10.1002/adma.201204196
[23] H. B. Zhang, Q. Yan, W. G. Zheng, Z. He, Z. Z. Yu, Tough graphene−polymer microcellular foams for electromagnetic inter-ference shielding. ACS Appl. Mater. Inter. 3(2011) 918−24. https://doi.org/10.1021/am200021v
[24] C. Basavaraja, W. J. Kim, D. Y. Kim, S. H. Do, Synthesis of polyaniline-gold/graphene oxide composite and microwave absorption characteristics of the composite films. Mater. Lett. 65(2011)3120−23. https://doi.org/10.1016/j.matlet.2011.06.110
[25] M. H. AlSaleh, U. Sundararaj, X-Band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites, J. Phys. D: Appl. Phys. 46(2013)035304-8. https://doi.org/10.1088/0022-3727/46/3/035304
[26] A. Kumar, S. Patil, A. Joshi, V. Bhoraskar, S. Datar, P. Alegaonkar, Mixed phase, sp2–sp3 bonded, and disordered few layer graphene-like nanocarbon: Synthesis and characterizations. Appl. Surf. Sci. 271(2013)86-92. https://doi.org/10.1016/j.apsusc.2013.01.097
[27] P. Larkin, Infrared and Raman spectroscopy: principles and spectral interpretation; elsevier: Amsterdam, 2011.
[28] B. Stuart, Infrared Spectroscopy; Wiley: Hoboken, NJ, USA, 2005. https://doi.org/10.1002/0471238961.0914061810151405.a01.pub2
[29] D. Stauffer, A. Aharony, Introduction to Percolation Theory; CRC Press: Boca Raton, FL, USA, 1994.
[30] S. Obukhov, First order rigidity transition in random rod networks, Phys. Rev. Lett. 74(1995) 4472-75. https://doi.org/10.1103/PhysRevLett.74.4472
[31] O. Regev, P. N. ElKati, J. Loos, C. E. Koning, Preparation of conductive nanotube−polymer composites using latex technology. Adv. Mater. 16(2004)248−51. https://doi.org/10.1002/adma.200305728
[32] Z. Ounaies, C. Park C, K. Wise, E. Siochi, J. Harrison, Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos. Sci. Technol. 63(2003)1637−1646. https://doi.org/10.1016/S0266-3538(03)00067-8
[33] J. Sandler, J. Kirk, I. Kinloch, M. Shaffer, A. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(2003)5893−99. https://doi.org/10.1016/S0032-3861(03)00539-1
[34] Agilent, PAN Microwave Network Analyzer, Catalogue and Product Note E8364B, 2009
[35] A. Jonscher, Dielectric relaxation in solids, Ed. 1st, Chelsea Dielectrics Press: London, 1983.
[36] N. Li, Y. B. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma et al. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6(2006)1141−45. https://doi.org/10.1021/nl0602589
[37] C. Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(2008)385-388. https://doi.org/10.1126/science.1157996
[38] M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(2008)3498-502. https://doi.org/10.1021/nl802558y
[39] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao F, C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(2008)902-907. https://doi.org/10.1021/nl0731872
[40] Y. H. Kahng, S. Lee, W. Park, G. Jo, M. Choe, J. H. Lee, H. Yu, T. Lee, K. Lee, Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities, Nanotechnol 23(2012) 075702-08. https://doi.org/10.1088/0957-4484/23/7/075702
[41] X. Du, I. Skachko, A. Barker, Andrei EY. Approaching ballistic transport in suspended graphene, Nat. Nanotechnol 3(2008)491-495. https://doi.org/10.1038/nnano.2008.199
[42] S. Stankovich, D. A. Dikin, G. A. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, et al Graphene-based composite materials, Nature 442(2006)282-286. https://doi.org/10.1038/nature04969
[43] M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano3(2009)3884-90. https://doi.org/10.1021/nn9010472
[44] S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. Dommett, et al. Graphene-silica composite thin films as transparent conductors, Nano Lett 7(2007)1888-92. https://doi.org/10.1021/nl070477+
[45] Y. Yang, W. Rigdon, X. Huang, X. Li, Enhancing graphene reinforcing potential in composites by hydrogen passivation induced dispersion, Sci. Rep. 3(2013)2086-2090. https://doi.org/10.1038/srep02086
[46] A. G. D’Aloia, F. Marra, A. Tamburrano, G. De Bellis, M. S. Sarto, Electromagnetic absorbing properties of graphene–polymer composite shields, Carbon 73(2014)175-84. https://doi.org/10.1016/j.carbon.2014.02.053
[47] A. Yasmin, J. J. Luo, I. M. Daniel, Processing of expanded graphite reinforced polymer nanocomposites, Composites Science and Technology66(2006)1182-1189. https://doi.org/10.1016/j.compscitech.2005.10.014
[48] A. Yasmin, I. M. Daniel, Mechanical and thermal properties of graphite platelet/epoxy composites, Polymer 45(2004)8211-9. https://doi.org/10.1016/j.polymer.2004.09.054
[49] I. Zaman, T. T. Phan, H. C. Kuan, Q. Meng, L. T. La, L. Luong, O. Youssf, J. Ma, Epoxy/graphene platelets nanocomposites with two levels of interface strength, Polymer 52(2011)1603-11. https://doi.org/10.1016/j.polymer.2011.02.003
[50] D. R. Bortz, E. G. Heras, I. Martin-Gullon, Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites, Macromolecules, 45(2011)238-45. https://doi.org/10.1021/ma201563k
[51] C. Bao, Y. Guo, L. Song, Y. Kan, X. Qian, Y. Hu, In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements, J. Mater.Chem. 21(2011)13290-8. https://doi.org/10.1039/c1jm11434d
[52] M. A. Rafiee, W. Lu, A. V. Thomas, A. Zandiatashbar, J. Rafiee, J. M. Tour, et al. Graphene nanoribbon composites. ACS Nano. 4(2010)7415-20. https://doi.org/10.1021/nn102529n
[53] L. C. Tang, Y. J. Wan, D. Yan, Y. B. Pei, L. Zhao, Y. B, Li, et al. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites, Carbon 60(2013)16-27. https://doi.org/10.1016/j.carbon.2013.03.050
[54] Y. J. Wan, L. C. Tang, D. Yan, L. Zhao, Y. B. Li, L. B. Wu, J. X, Jiang, G. Q. Lai, Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process, Compos. Sci.Technol. 82(2013)60-68. https://doi.org/10.1016/j.compscitech.2013.04.009
[55] F. Yavari, M. A. Rafiee, J. Rafiee, Z. Z. Yu, N. Koratkar, Dramatic increase in fatigue life in hierarchical graphene composites, ACS applied materials & interfaces, 2(2010)2738-2743. https://doi.org/10.1021/am100728r
[56] M. Naebe, J. Wang, A. Amini, H. Khayyam, N. Hameed, L. H. Li, et al. Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites, Sci. Rep., 4(2014)4375-4379. https://doi.org/10.1038/srep04375
[57] A. J. Crosby, J. Y. Lee, Polymer nanocomposites: the “nano” effect on mechanical properties, Polym. Rev. 47(2007)217-229. https://doi.org/10.1080/15583720701271278
[58] T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol, 3(2008)327-335. https://doi.org/10.1038/nnano.2008.96
[59] F. W. Starr, T. B. Schrøder, S. C. Glotzer, Molecular dynamics simulation of a polymer melt with a nanoscopic particle, Macromolecules 35 (2002)4481-4492. https://doi.org/10.1021/ma010626p
[60] J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Molecular‐level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites, Adv. Funct. Mater. 19(2009)2297-2302. https://doi.org/10.1002/adfm.200801776
[61] S. A. Shojaee, A. Zandiatashbar, N. Koratkar, D. A. Lucca, Raman spectroscopic imaging of graphene dispersion in polymer composites, Carbon 62(2013)510-513. https://doi.org/10.1016/j.carbon.2013.05.068
[62] J. Zhang, B. Zhang, Q. Xue, Z. Wang, Ultra-elastic recovery and low friction of amorphous carbon films produced by a dispersion of multilayer graphene, Diamond Relat. Mater. 23(2012)5-9. https://doi.org/10.1016/j.diamond.2011.12.011
[63] X. Li, P. Nardi, Micro/nanomechanical characterization of a natural nanocomposite material—the shell of Pectinidae, Nanotechnology 15(2003)211-219. https://doi.org/10.1088/0957-4484/15/1/038
[64] T.U. Patro, H. D. Wagner, Layer-by-layer assembled pva/laponite multilayer free-standing films and their mechanical and thermal properties, Nanotechnology 22(2011)455706-12. https://doi.org/10.1088/0957-4484/22/45/455706
[65] P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. Xu, et al. Ultrastrong and stiff layered polymer nanocomposites, Science318(2007)80-83.
[66] E. S. Greenhalgh, Failure Analysis and Fractography of Polymer Composites, Ed. first, Woodhead Publishing, New Delhi, 2009.
[67] S. K. Rath, V. K. Aswal, C. Sharma, K. Joshi, M. Patri, G. Harikrishnan, et al. Mechanistic origins of multi-scale reinforcements in segmented polyurethane-clay nanocomposites, Polymer, 55(2014)5198-5210. https://doi.org/10.1016/j.polymer.2014.08.035
[68] D. K. Chouhan, S. K. Rath, A. Kumar, P. Alegaonkar, S. Kumar, G. Harikrishnan, T. U. Patro, Structure-reinforcement correlation and chain dynamics in graphene oxide and laponite-filled epoxy nanocomposites, J. Mater. Sci. 50(2015)7458-72. https://doi.org/10.1007/s10853-015-9305-5
[69] M. El Achaby, Y. Essamlali, N. El Miri, A. Snik, K. Abdelouahdi, A. Fihri, M. Zahouily, A. Solhy, Graphene oxide reinforced chitosan/polyvinylpyrrolidone polymer bio‐nanocomposites, J. Appl. Polym Sc., 22 (2014) 131-136. https://doi.org/10.1002/app.41042
[70] S. Ganguli, A. K. Roy, D. P. Anderson, Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites, Carbon 46(2008)806-817. https://doi.org/10.1016/j.carbon.2008.02.008
[71] G. D. Smith, D. Bedrov, L. Li, O. A. Byutner, A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites, J. Chem. Phys. 117(2002) 9478-89. https://doi.org/10.1063/1.1516589
[72] Jae-Hong Park, Gil-Hwan Son, Jin-San Moon, Jae-Hee Han, Alexander S. Berdinsky, D.G. Kuvshinov, Ji-Beom Yoo, Chong-Yun Park, Screen printed carbon nanotube field emitter array for lighting source application J. Vac. Sci. Technol., B 23 (2005) 749-753. https://doi.org/10.1116/1.1851535
[73] Y.J. Jung, G.H. Son, J.H. Park, Y.W. Kim, Alexander S. Berdinsky, J.B.Yoo, C.Y. Park, Fabrication and properties of under-gated triode with CNT emitter for flat lamp. Diamond Relat. Mater. 14 (2005) 2109-12. https://doi.org/10.1016/j.diamond.2005.07.029
[74] Shuying Yang, Karen Lozano, Azalia Lomeli, Heinrich D. Foltz, Robert Jones, Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Compos., A 36 (2005) 691-97.
[75] J.S. Moon, J.H. Park, T.Y. Lee, Y.W. Kim, J.B. Yoo, C.Y. Park, J.M. Kim, K.W. Jin, Transparent conductive film based on carbon nanotubes and PEDOT composites. Diamond Relat. Mater. 14 (2005) 1882-87. https://doi.org/10.1016/j.diamond.2005.07.015
[76] C. Park, Z. Ounaied, K.A.Watson, R.E. Crooks, J. Smith Jr., S.E. Lowther, J.W. Connell, E.J. Siochi, J.S. Harrison, T.L. St. Clair, Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 364 (2002) 303-08. https://doi.org/10.1016/S0009-2614(02)01326-X
[77] E.J. Ra, K.H. An, K.K. Kim, S.Y. Jeong, Y.H. Lee, Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chem. Phys. Lett. 413 (2005) 188-93. https://doi.org/10.1016/j.cplett.2005.07.061
[78] K.Frank, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C. Li, P. Willis, Electrospinning of continuous carbon nanotube‐filled nanofiber yarns. Adv. Mater. 15 (2003) 1161-65. https://doi.org/10.1002/adma.200304955
[79] D.I. Cha, H.Y. Kim, K.H. Lee, Y.C. Jung, J.W. Cho, B.C. Chun, Electrospun nonwovens of shape‐memory polyurethane block copolymers. J. Appl. Polym. Sci. 96 (2005) 460-65. https://doi.org/10.1002/app.21467
[80] M.M. Bergshoef, G.J. Vancso, Transparent nanocomposites with ultrathin, electrospun nylon‐4, 6 fiber reinforcement. Adv. Mater. 11 (1999) 1362-65. https://doi.org/10.1002/(SICI)1521-4095(199911)11:16<1362::AID-ADMA1362>3.0.CO;2-X
[81] Y. Wang, Y. Xia, Dynamic tensile properties of E-glass, Kevlar49 and polyvinyl alcohol fiber bundles. , J. Mater. Sci. Lett .19 (2002) 583-86. https://doi.org/10.1023/A:1006730312279
[82] Valerie C. Moore, Michael S. Strano, Erik H. Haroz, Robert H. Hauge,Richard E. Smalley, Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3 (2003) 1379-82. https://doi.org/10.1021/nl034524j
[83] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.E. Smalley, Fullerene pipes. Science 280 (1998)1253-56. https://doi.org/10.1126/science.280.5367.1253
[84] Tae Young Lee, Ji-Beom Yoo, Lee TY, Yoo JB. Adsorption characteristics of Ru (II) dye on carbon nanotubes for organic solar cell. Diamond Relat. Mater. 14 (2005) 1888-90. https://doi.org/10.1016/j.diamond.2005.08.055
[85] H. Hou, J.J. Ge, J. Zwng, Q. Li, D.H. Reneker, A. Greiner, S.Z.D. Cheng, Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem. Mater. 17 (2005) 967-73. https://doi.org/10.1021/cm0484955
[86] Jie Liu, Michael J. Casavant, Michael Cox, D.A.Walters, P. Boul,Wei Lu,A.J. Rimberg, K.A. Smith, Daniel T. Colbert, Richard E. Smalley, Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chem.Phys. Lett. 303 (1999) 125-29. https://doi.org/10.1016/S0009-2614(99)00209-2
[87] K. Esumi, M. Ishigami, A. Nakajima, K. Sawada, H. Honda, Chemical treatment of carbon nanotubes. Carbon 34 (1996) 279-81. https://doi.org/10.1016/0008-6223(96)83349-5
[88] T. Ramanathan, F.T. Fisher, R.S. Rouff, L.C. Brinson, Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem. Mater. 17 (2005) 1290-95. https://doi.org/10.1021/cm048357f
[89] R. Haggenmueller, F. Du, J.E. Fischer, K.I. Winey, Interfacial in situ polymerization of single wall carbon nanotube/nylon 6, 6 nanocomposites. Polymer 47 (2006)2381-88 https://doi.org/10.1016/j.polymer.2006.01.087
[90] R.H Baughman, A.A. Zakhidov, W.A.de Heer. Carbon nanotubes–the route toward applications. Science 297(2002) 787-92. https://doi.org/10.1126/science.1060928
[91] W.B Choi, D.S.Chung, J.H Kang, H.Y.Kim, Y.W.Jin, I.T Han,Y.H Lee,J.E. Jung, N.S.Lee, G.S.Park, J.M.Kim. Fully sealed, high–brightness carbon–nanotube field–emission display. Appl Phys Lett 75(1999) 3129-31. https://doi.org/10.1063/1.125253
[92] H.J Kim, J.J.Choi, J.H.Han, J.H.Park,J.B Yoo. Design and field Emission test of carbon nanotube pasted cathodes for traveling–wave tube applications. IEEE Trans Electron Devices 53(2006) 2674-80. https://doi.org/10.1109/TED.2006.884076
[93] C.A.Spindt, I.Brodie, L. Humphrey, E. Westerberg . Physical properties of thin-film field emission cathodes with molybdenum cones. J Appl Phys 47(1976) 5248-63. https://doi.org/10.1063/1.322600
[94] J.M.Bonard, H.Kind, T.Stockli. Field emission form carbon nanotubes: the first fiveyears. Solid State Electronics 45(2001) 893-14. https://doi.org/10.1016/S0038-1101(00)00213-6
[95] H.Cui,O. Zhou, B.R.Stoner. Deposition of aligned bamboo–like carbon nanotubes viamicrowave plasma enhanced chemical vapor deposition. J Appl Phys 88 (2000) 6072-74. https://doi.org/10.1063/1.1320024
[96]N.S Lee,D.S. Chung, I.T Han, J.H.Kang, Y.S.Choi, H.Y Kim, S.H.Park,Y.W. Jin, W.K.Yi, M.J.Yun, J.E.Jung, C.J. Lee, J.H. Yoo, S.H.Jo, C.G.Lee, J.M Kim. Application of carbonnanotubes to field emission displays. Diamond and Relat Maters 10(2001) 265-70. https://doi.org/10.1016/S0925-9635(00)00478-7
[97] A.Hirsch, Functionalization of single–walled carbon nanotubes. Angew Chem Int Ed 41(2002) 1843-59. https://doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
[98] J.Zhu, H. Peng, F.Rodriguez-Macias, J.L.Margrave, V.N. Khubashesku, A.M. Imam, K.Lozano, E.V Barrera. Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv Funct Mater 14(2004) 643-48. https://doi.org/10.1002/adfm.200305162
[99] J.L.Matthew, J. Vergne, E.D. Mowles,W.H. Zhong,D.M. Hercules,C.M. Lukehart CM. Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs). Carbon 43(2005)2883–93. https://doi.org/10.1016/j.carbon.2005.06.003
[100] M.L.Sham, J.K. Kim. Surface functionalities of multi–wall carbon nanotubes after UV/Ozone and TEAT treatments. Carbon 44(2006) 768-77. https://doi.org/10.1016/j.carbon.2005.09.013
[101] P.He , Y. Gao , J. Lian , L. Wang, D. Qian , J. Zhao , W. Wang ,M.J. Schulz, X.P. Zhou, D.Shi. Surface modification and ultrasonication effect on the mechanical properties of carbon nanofiber/polycarbonate composites. Composites: Part A 37(2006) 1270-75. https://doi.org/10.1016/j.compositesa.2005.08.008
[102] G.Yu, J. Gong, S.Wang, D. Zhu, S.He, Z. Zhu. Etching effects of ethanol on multiwalled carbon nanotubes. Carbon 44(2006) 1218-24. https://doi.org/10.1016/j.carbon.2005.10.050
[103] J.S.Moon, P.S. Alegaonkar, J.H. Han, T.Y Lee, J.B Yoo, J.M. Kim. Enhanced field emission properties of thin-multiwalled carbon nanotubes: role of SiOx coating. J Appl Phys 100(2006) 1043031-37. https://doi.org/10.1063/1.2384795
[104] B.Kim, Y.H.Lee, J.H Ryu, K.D.Suh. Enhanced colloidal properties of single-wall carbon nanotubes in _-terpineol and Texanol. Colloids and Surfaces A 273(2006)161–64. https://doi.org/10.1016/j.colsurfa.2005.08.024
[105] J.Liu, A.G. Rinzler, H. Dai, J.H.Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.S. Shon, T.R. Lee, D.T. Colbert, R.E.Smalley. Fullerene pipes. Science 280(1998) 1253-56. https://doi.org/10.1126/science.280.5367.1253
[106] Y.Cheng, O. Zhou. Electron field emission from carbon nanotubes. Comptes Rendus Physique 4(2003) 1021-33. https://doi.org/10.1016/S1631-0705(03)00103-8
[107] F.H.Gojnu, M.H.G.Wichmann, U.Kopke, B.Fiedler, K. Schulte . Carbon nanotubereinforced epoxy-composites; enhanced stiffness and fracture toughness at low nanotube content. Comp Sci and Technol.64(2004) 2363-71. https://doi.org/10.1016/j.compscitech.2004.04.002
[108] E.T.Thostenson, T.W.Chou. Processing–structure–multi–functional property relation ship in carbon nanotube/epoxy composites. Carbon 44(2006) 3022-29. https://doi.org/10.1016/j.carbon.2006.05.014
[109] A.Yasmin, J.LAbot, I.M Daniel. Processing of clay/epoxy nanocomposites by shear Mixing. Scr Mater 49(2003) 81-86. https://doi.org/10.1016/S1359-6462(03)00173-8
[110] R.H. Nordheim, L.W.Fowler Electron emission in intense electric field. Proc Roy Soc London A 119(1928) 173-81. https://doi.org/10.1098/rspa.1928.0091
[111] D. Temple . Recent progress in field emitter array development for high performance applications. Mater Sci Eng R 24(1999) 185-239. https://doi.org/10.1016/S0927-796X(98)00014-X
[112] A.S.Berdinsky, A.V.Shaporin,J.B. Yoo, J.H.Park, P.S.Alegaonkar, J.H. Han, G.H.Son . Field enhancement factor for an array of MWNTs in CNT paste. Appl Phys A 83(2006) 377-83. https://doi.org/10.1007/s00339-006-3482-7
[113] P.C.P.Watts,S.M. Lyth, E.Mendosz, S.R.P.Silva. Polymer supported carbon nanotube arrays for field emission and sensor devices. Appl Phys Lett 89(2006) 1031131-33. https://doi.org/10.1063/1.2345615