Wood Flour Filled Thermoset Composites

$20.00

Wood Flour Filled Thermoset Composites

M. Ramesh, L. Rajeshkumar

The increasing environmental concerns, health related issues and depletion of fossil fuels have led to an increased interest in the development of eco-friendly bio-degradable and sustainable materials. The development of sustainable and renewable materials from natural resources has been witnessing a tremendous world-wide attention and importance. In recent years, there has been a continuous and emerging research in the preparation of novel materials from wood based resources due to their great potential as alternatives to petroleum-based products. Wood flour based composite is recognized as sustainable materials owing to its eco-friendly attributes derived from reinforcement of fully degradable wood fibers etc. which leads toward minimization of the generation of polluting agents. The aim of this chapter was to develop sustainable composites by complete replacement of the synthetic fibers by sustainable wood flour and substituting thermoset matrices. This chapter discusses the fabrication methods of wood flour based composites, and its properties in detail. From the analysis it is observed that physical and mechanical properties of the composites are greatly influenced by the fibre loading and the concentration of wood flour. The practical applications of these composites are also discussed at the end of the chapter.

Keywords
Wood Polymer Composites, Wood Flour, Eco-Friendly, Bio-Degradability, Thermoset Composites

Published online 10/1/2018, 33 pages

DOI: http://dx.doi.org/10.21741/9781945291876-2

Part of the book on Thermoset Composites

References
[1] J.M. Dinwoodie, Timber: It’s Nature and Behaviour, second ed. E & FN Spon, New York, 2000. https://doi.org/10.4324/9780203477878
[2] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, 1997. https://doi.org/10.1017/CBO9781139878326
[3] J. Bodig, B.A. Jayne, Mechanics of Wood and Wood Composites, Van Nostrand Reinhold, New York, 1982.
[4] S.P. Singh, Agro-industrial wastes and their utilization, In: Proc of National Seminar on Building Materials and their Science and Technology, Roorkee, v.15, p.111, 1982.
[5] K. Joseph, R.D.T. Filho, B. James, S. Thomas, L.H. de Carvalho, A review on sisal fibre reinforced polymer composites, Revista Brasileira de Engenharia Agricola e Ambiental, 3(3) (1999) 367-379. https://doi.org/10.1590/1807-1929/agriambi.v3n3p367-379
[6] R.M. Rowell, Handbook of Wood Chemistry and Wood Composites, second ed., Boca Raton. FL: CRC Press, 2012. https://doi.org/10.1201/b12487
[7] A.K. Mohanty, M. Misra, L.T. Drzal, Natural Fibres, Biopolymers, and Biocomposites, CRC Press: Boca Raton, FL, 2005. https://doi.org/10.1201/9780203508206
[8] F.T. Wallenberger, N.E. Weston Natural Fibres, Plastics and Composites, Springer: NY, 2004. https://doi.org/10.1007/978-1-4419-9050-1
[9] R.S. Blackburn, Biodegradable and Sustainable Fibres, Elsevier; Amsterdam, 2005.
[10] R.R. Franck, Bast and other Plant Fibres; CRC Press: Boca Raton, FL, 2005. https://doi.org/10.1533/9781845690618
[11] S. Thomas, L.A. Pothan, Natural fibre reinforced polymer composites: From macro to nanoscale. In: Archives Contemporaines. Old City Publishing: Philadelphia, PA, USA, 2009. https://doi.org/10.1504/IJMPT.2009.027839
[12] L. Yan, N. Chouw, K. Jayaraman, Flax fibre and its composites: A review, Compos. Part B: Eng. 56 (2014) 296–317. https://doi.org/10.1016/j.compositesb.2013.08.014
[13] A. Shahzad, Hemp fibre and its composites: A review, J. Compos. Mater. 46 (2012) 973–986. https://doi.org/10.1177/0021998311413623
[14] A.K. Mohanty, M. Misra, Studies on jute composites: A literature review, Polym-Plast. Technol. Eng. 34 (1995) 729–792. https://doi.org/10.1080/03602559508009599
[15] H.M. Akil, M.F. Omar, A.A.M. Mazuki, S. Safiee, Z. Ishak, A. A. Bakar, Kenaf fibre reinforced composites: A review, Mater. Des. 32 (2011) 4107–4121. https://doi.org/10.1016/j.matdes.2011.04.008
[16] Y. Li, Y.W. Mai, L. Ye, Sisal fibre and its composites: A review of recent developments, Compos. Sci. Technol. 60 (2000) 2037–2055. https://doi.org/10.1016/S0266-3538(00)00101-9
[17] D.S. Varma, M. Varma, I.K. Varma, Coir fibres. Part I. Effect of physical and chemical treatments on properties, Text. Res. J. 54 (1984) 827–832. https://doi.org/10.1177/004051758405401206
[18] C.G. Jarman, Banana fibre: A review of its properties and small-scale extraction and processing, Trop. Sci. 19 (1977) 173–185.
[19] M.A.S. Spinace, C.S. Lambert, K.K.G. Fermoselli, M.A. De Paoli, Characterization of lignocellulosic curaua fibres, Carbohyd. Polym. 77 (2009) 47–53. https://doi.org/10.1016/j.carbpol.2008.12.005
[20] R.V. Silva, E.M.F. Aquino, Curaua fibre: A new alternative to polymeric composites, J. Reinf. Plast. Compos. 27 (2008) 103–112. https://doi.org/10.1177/0731684407079496
[21] J.S. Caraschi, A.L. Leato, Characterization of curaua fibre, Molecul. Cryst. Liq. Cryst. 353 (2000) 149–152. https://doi.org/10.1080/10587250008025655
[22] S. Mishra,A.K. Mohanty, L.T. Drzal, M. Misra, G. Hinrichsen, A review on pineapple leaf fibres, sisal fibres and their biocomposites, Macromol. Mater. Eng. 289 (2004) 955–974. https://doi.org/10.1002/mame.200400132
[23] D.S. Varma, M. Varma, I.K. Varma, Coir fibres II: Evaluation as a reinforcement in unsaturated polyester resin composites, J. Reinf. Plast. Compos. 4 (1985) 419–431. https://doi.org/10.1177/073168448500400406
[24] D.H. Mueller, A. Krobjilowski, New discovery in the properties of composites reinforced with natural fibres, J. Ind. Text. 33 (2003) 111–130. https://doi.org/10.1177/152808303039248
[25] S. Shinoj, R. Visvanathan, S. Panigrahi, M. Kochubabu, Oil palm fibre (OPF) and its composites: A review, Ind. Crop. Prod. 33 (2011) 7–22. https://doi.org/10.1016/j.indcrop.2010.09.009
[26] D. Verma, P.C. Gope, M.K. Maheswari, R.K. Sharma, Bagasse fibre composites: A review, J. Mater. Environ. Sci. 3 (2012) 1079–1092.
[27] Y.R. Loh, D. Sujan, M.E. Rahman, C.A. Das, Sugarcane bagasse-The future composite material: A literature review, Resour. Conser. Recycl. 75 (2013) 14–22. https://doi.org/10.1016/j.resconrec.2013.03.002
[28] N.J. Smith, G. Junior Virgo, V.E. Buchanan, Potential of Jamaican banana, coconut coir and bagasse fibres as composite materials, Mater. Character. 59 (2008) 1273–1278. https://doi.org/10.1016/j.matchar.2007.10.011
[29] S.N. Monteiro, R.J.S. Rodriquez, M.V. De Souza, J.R.M. d’Almeida, Sugar cane bagasse waste as reinforcement in low cost composites, Adv. Perform. Mater. 5 (1998) 183–191. https://doi.org/10.1023/A:1008678314233
[30] D. Liu, J. Song, D.P. Andersen, P.R. Chang, Y. Hua, Bamboo fibre and its reinforced composites: structure and properties, Cellulose 19 (2012) 1449–1480. https://doi.org/10.1007/s10570-012-9741-1
[31] A.K. Bledzki, S. Reihmane, J. Gassan, Thermoplastics reinforced with wood fillers: A literature review, Polym-Plast. Technol. Eng. 37 (1998) 451–468. https://doi.org/10.1080/03602559808001373
[32] J. Mussig, Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications; Wiley: NJ, 2010. https://doi.org/10.1002/9780470660324
[33] F.P. La Mantia, M. Morreale, Green composites: A brief review, Compos. Part A 42 (2011) 579–588. https://doi.org/10.1016/j.compositesa.2011.01.017
[34] A.K. Mohanty, M. Misra, G. Hinrichsen, Biofibres, biodegradable polymers and bio-composites: An overview, Macromol. Mater. Eng. 276-277 (2000) 1–24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
[35] G. Koronis, A. Silva, M. Fontul, Green composites: A review of adequate materials for automotive applications, Composites: Part B 44 (2013) 120–127. https://doi.org/10.1016/j.compositesb.2012.07.004
[36] H. Ku, H. Wang, N. Pattarachaiyakoop, M. Trada, A review on tensile properties of natural fibre reinforced polymer composites, Composites: Part B 42 (2011) 856–873. https://doi.org/10.1016/j.compositesb.2011.01.010
[37] J. George, M.S. Sreekala, S. Thomas, A review on interface modification and characterization of natural fibre reinforced plastic composites, Polym. Eng. Sci. 41 (2001) 1471–1485. https://doi.org/10.1002/pen.10846
[38] M.M. Kabir, H. Wang, K. Lau, T. Cardona, Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview, Compos. Part B: Eng. 43 (2012) 2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053
[39] Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, C. Mai, Silane coupling agents used for natural fibre/polymer composites: A review, Composites: Part A 41 (2010) 806–819. https://doi.org/10.1016/j.compositesa.2010.03.005
[40] D.B. Dittenber, H.V.S. Gangarao, Critical review of recent publications on use of natural composites in infrastructure, Composites: Part A 43 (2012) 1419–1429. https://doi.org/10.1016/j.compositesa.2011.11.019
[41] R. Malkapuram, V. Kumar, Y.S. Negi, Recent developments in natural fibre reinforced polypropylene composites, J. Reinf. Plast. Compos. 28 (2009) 1169–1189. https://doi.org/10.1177/0731684407087759
[42] Q.T. Shubhra, A.K.M.M. Alam, M.A. Quaiyyum, Mechanical properties of polypropylene composites: A review, J. Thermoplast. Compos. Mater. 26 (2013) 362–391. https://doi.org/10.1177/0892705711428659
[43] J. Summerscales, N.P.J. Dissanayake, A.S. Virk, W. Hall, A review of bast fibres and their composites. Part 1: Fibres as reinforcements, Composites: Part A 41 (2010) 1329–1335. https://doi.org/10.1016/j.compositesa.2010.06.001
[44] J. Summerscales, N.P.J. Dissanayake, A.S. Virk, W. Hall, A review of bast fibres and their composites, Part 2: Composites. Composites: Part A 41 (2010) 1336–1344. https://doi.org/10.1016/j.compositesa.2010.05.020
[45] M. Ramesh, K. Palanikumar, K. H. Reddy, Plant fibre based bio-composites: Sustainable and renewable green materials, Renew. Sustain. Energy Rev. 79 (2017) 558-584. https://doi.org/10.1016/j.rser.2017.05.094
[46] M. Ramesh, Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: A review on processing and properties, Prog. Mater. Sci. 78-79 (2016) 1-92. https://doi.org/10.1016/j.pmatsci.2015.11.001
[47] S.M. Mirmehdi, F. Zeinaly, F. Dabbagh, Date palm wood flour as filler of linear low-density polyethylene, Composites: Part B 56 (2014) 137–141. https://doi.org/10.1016/j.compositesb.2013.08.008
[48] A.K. Bledzki, M. Letman, A. Viksne, L. Rence, A comparison of compounding processes and wood type for wood fibre-PP composites, Composites 36 (2005) 789–797. https://doi.org/10.1016/j.compositesa.2004.10.029
[49] M.N. Ichazo, C. Albano, J. Gonzalez, R. Perera, M.V. Candal, Polypropylene/wood flour composites: treatments and properties, Compos. Struct. 54 (2001) 207–214. https://doi.org/10.1016/S0263-8223(01)00089-7
[50] A.K. Bledzki, O. Faruk, M. Huque, Physico-mechanical studies of wood fibre reinforced composites, Polym-Plast. Technol. Eng. 41 (2002) 435–451. https://doi.org/10.1081/PPT-120004361
[51] G. Hattotuwa, B. Premalal, H. Ismail, A. Bahrain, Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polyethylene composites, Polym. Test. 21 (2002) 833–839. https://doi.org/10.1016/S0142-9418(02)00018-1
[52] A. Ashori, A. Nourbakhsh, Preparation and characterization of polypropylene/wood flour/nanoclay composites, Eur. J. Wood Prod. 69 (2011) 663–666. https://doi.org/10.1007/s00107-010-0488-9
[53] C.M. Clemons, Wood-plastic composites in the United States: the interfacing of two industries, Forest Prod. J. 52 (2002) 10–18.
[54] P. Bazant, L. Munster, M. Machovsky, J. Sedlak, M. Pastorek, Z. Kozakova, I. Kuritka. Wood flour modified by hierarchical Ag/ZnO as potential filler for wood–plastic composites with enhanced surface antibacterial performance, Ind. Crop. Prod. 62 (2014) 179–187. https://doi.org/10.1016/j.indcrop.2014.08.028
[55] D.N.S. Hon, W.Y. Chao, Composites from benzylated wood and polystyrenes: their processability and viscoelastic properties, J. Appl. Polym. Sci. 50 (1993) 7–11. https://doi.org/10.1002/app.1993.070500102
[56] D. Maldas, B. V. Kokta, Influence of phthalic anhydride as a coupling agent on the mechanical behavior of wood fibre-polystyrene composites, J. Appl. Polym. Sci. 41 (1990) 185–194. https://doi.org/10.1002/app.1990.070410116
[57] M.G.S. Yap, Y.I. Que, L.H.L. Chia, Dynamic mechanical analysis of tropical wood–polymer composites, J. Appl. Polym. Sci. 43 (1991) 1999–2004. https://doi.org/10.1002/app.1991.070431106
[58] J. George, S.S. Bhagwan, N. Prabhakaran, S. Thomas, Short pineapple leaf fibre reinforced low density polyethylene composites, J. Appl. Polym. Sci. 57 (1995) 843–854. https://doi.org/10.1002/app.1995.070570708
[59] N.L. Dos, M.M. Elawday, S.H. Monsour, Impregnation of white pine wood with unsaturated polyesters to produce wood–plastic combinations, J. Appl. Polym. Sci. 42 (1991) 2589–2594. https://doi.org/10.1002/app.1991.070420924
[60] T. Gurunathan, S. Mohanty, S.K. Nayak, A review of the recent developments in biocomposites based on natural fibres and their application perspectives, Compos. Part A Appl. Sci. Manuf. 77 (2015) 1-25. https://doi.org/10.1016/j.compositesa.2015.06.007
[61] E.O. Olakanmi, M.J. Strydom, Critical materials and processing challenges affecting the interface and functional performance of wood polymer composites (WPCs), Mater. Chem. Phys. 171 (2016) 290-302. https://doi.org/10.1016/j.matchemphys.2016.01.020
[62] B.A.A. Ali, S.M. Sapuan, E.S. Zainudin, M. Othmand, Implementation of the expert decision system for environmental assessment in composite materials selection for automotive components, J. Clean. Prod. 107 (2015) 557-567. https://doi.org/10.1016/j.jclepro.2015.05.084
[63] M.A. AlMaadeed, R. Kahraman, P. N. Khanam, N. Madi, Date palm wood flour/glass fibre reinforced hybrid composites of recycled polypropylene: Mechanical and thermal properties. Mater. Des. 42 (2012) 289–294. https://doi.org/10.1016/j.matdes.2012.05.055
[64] J.Z. Lu, Q. Wu, H.S. McNabb, Chemical coupling in wood fibre and polymer composites: a review of coupling agents and treatments. Wood Fibre Sci. 32 (2000) 88-104.
[65] S. Kalia, B.S. Kaith, I. Kaur, Pretreatments of natural fibres and their application as reinforcing material in polymer composites-a review. Polym. Eng. Sci. 49 (2009) 1253–1272. https://doi.org/10.1002/pi.1386
[66] N.M. Stark, R.E. Rowlands, Effects of wood fibre characteristics on mechanical properties of wood/polypropylene composites, Wood Fibre Sci. 35 (2003) 167–174.
[67] N.M. Stark, Effect of species and particle size on properties of wood-flour-filled polypropylene composites. Functional fillers for thermoplastics & thermosets, San diego, California; 1997.
[68] N. Sombatsompop, K. Chaochanchaikul, C. Phromchirasuk, S. Thongsang, Effect of wood sawdust content on rheological and structural changes, and thermo-mechanical properties of PVC/sawdust composites, Polym. Int. 52 (2003) 1847–1855. https://doi.org/10.1002/pi.1386
[69] N.E. Marcovich, M.M. Reboredo, M.I Aranguren, Dependence of the mechanical properties of woodflour–polymer composites on the moisture content, J. Appl. Polym. Sci. 68 (1997) 2069–2076. https://doi.org/10.1002/(SICI)1097-4628(19980627)68:13<2069::AID-APP2>3.0.CO;2-A
[70] N.E. Marcovich, M.I Aranguren, M.M. Reboredo, Modified woodflour as thermoset fillers Part I. Effect of the chemical modification and percentage of filler on the mechanical properties, Polymer 42 (2000) 815–825. https://doi.org/10.1016/S0032-3861(00)00286-X
[71] P.A.d. Arcaya, A. Retegi, A. Arbelaiz, K.M. Kenny, I. Mondragon, Mechanical properties of natural fibres/polyamides composites, Polym. Compos. 20 (2009) 257–264. https://doi.org/10.1002/pc.20558
[72] Y. Mamunya, M. Zanoaga, V. Myshak, F. Tanasa, E. Lebedev, C. Grigoras, V. Semynog, Structure and properties of polymer–wood composites based on an aliphatic copolyamide and secondary polyethylenes, J. Appl. Polym. Sci. 101 (2005) 1700–1710. https://doi.org/10.1002/app.23328
[73] F. Yao, Q. Wu, Y. Lei, W. Guo, Y. Xu Y, Thermal decomposition kinetics of natural fibres: activation energy with dynamic thermogravimetric analysis, Polym. Degrad. Stab.93 (2007) 90–98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012
[74] N.E. Marcovich, M.M. Reboredo, M.I. Aranguren, Modified woodflour as thermoset fillers II. Thermal degradation of woodflours and composites, Thermochim Acta 372 (2000) 45–57. https://doi.org/10.1016/S0040-6031(01)00425-7
[75] H. Bouafif, A. Koubaa, P. Perre, A. Cloutier, B. Riedl B, Wood particle/high-density polyethylene composites: thermal sensitivity and nucleating ability of wood particles, J. Appl. Polym. Sci. 113 (2009) 593–600. https://doi.org/10.1002/app.30129
[76] P.A. Santos, M.A.S. Spinace, K.K.G. Fermoselli, M.A.D. Paoli, Polyamide-6/vegetal fibre composite prepared by extrusion and injection molding,Composites: Part A 38 (2007) 2404–2411. https://doi.org/10.1016/j.compositesa.2007.08.011
[77] F.M.B. Coutinho, T.H.S. Costa, D.L. Carvalho, Polypropylene-wood fibre composites: Effect of treatment and mixing conditions on mechanical properties, J. Appl. Sci. 65 (1997) 1227–1235. https://doi.org/10.1002/(SICI)1097-4628(19970808)65:6<1227::AID-APP18>3.0.CO;2-Q
[78] S.E. Selke, I. Wichman, Wood fibre/polyolefin composites, Composites: Part A 35 (2004) 321–326. https://doi.org/10.1016/j.compositesa.2003.09.010
[79] H. Peltola, E. Paakkonen, P. Jetsu, S. Heinemann, Wood based PLA and PP composites: Effect of fibre type and matrix polymer on fibre morphology, dispersion and composite properties, Composites: Part A 61 (2014) 13–22. https://doi.org/10.1016/j.compositesa.2014.02.002
[80] K.O. Niska, M. Sain, Wood-Polymer Composites, Elsevier; Amsterdam, 2008. https://doi.org/10.1533/9781845694579
[81] A.K. Bledzki, J. Izbicka, J. Gassan, Kunststoffe-Umwelt-Recycling, Stettin: Poland; 1995, 27–29.
[82] A.A Klyosov, Wood-Plastic Composites, Wiley: NJ, 2007. https://doi.org/10.1002/9780470165935
[83] A.K. Bledzki, O. Faruk, Creep and impact properties of wood fibre–polypropylene composites: influence of temperature and moisture content, Compos. Sci. Technol. 64 (2004) 693–700. https://doi.org/10.1016/S0266-3538(03)00291-4
[84] A.K. Bledzki, A.A. Mamun, J. Volk, Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties, Compos. Sci. Technol. 70 (2010) 840-846. https://doi.org/10.1016/j.compscitech.2010.01.022
[85] O. Nabinejad, D. Sujan, M.E. Rahman, I.J. Davies, Effect of oil palm shell powder on the mechanical performance and thermal stability of polyester composites, Mater. Des. 65 (2015) 823-830. https://doi.org/10.1016/j.matdes.2014.09.080
[86] R.L. Quirino, J. Woodford, R.C. Larock, Soybean and linseed oil-based composites reinforced with wood flour and wood fibres, J. Appl. Polym. Sci. 124 (2012) 1520-1528. https://doi.org/10.1002/app.35161
[87] H.P.S.A. Khalil, M.A. Tehrani, Y. Davoudpour, A.H. Bhat, M. Jawaid, A. Hassan, Natural fibre reinforced poly(vinyl chloride) composites: a review, J. Reinf. Plast. Compos. 32(5) (2013) 330–356. https://doi.org/10.1177/0731684412458553
[88] J. Gassan, A.K. Bledzki, Alkali treatment of jute fibres: Relationship between structure and mechanical properties, J. Appl. Polym. Sci. 71(1991) 623–629. https://doi.org/10.1002/(SICI)1097-4628(19990124)71:4<623::AID-APP14>3.0.CO;2-K
[89] J.J. Balatinecz, Byung-Dae Park,The effects of temperature and moisture exposure on the properties of wood-fibre thermoplastic composites, J. Thermoplast. Comp. Mat. 10 (1997) 476–487. https://doi.org/10.1177/089270579701000504
[90] F.H.M.M. Costa, J.R.M. D’Almeida, Effect of water absorption on the mechanical properties of sisal and jute fibre composites, Polym.-Plast. Technol. Eng. 38 (1999) 1081–1094. https://doi.org/10.1080/03602559909351632
[91] M. Miki, N. Takakura, K. Kanayama, K. Yamaguchi, T. Iizuka, Effects of forming conditions on compaction characteristics of wood powders, Trans. Jpn. Soc. Mech. Eng. C 69 (2003)502–508. https://doi.org/10.1299/kikaic.69.502
[92] M. Miki, N. Takakura, K. Kanayama, K. Yamaguchi, T. Iizuka, Effects of forming conditions on flow characteristics of wood powders. Trans. Jpn. Soc. Mech. Eng. C 69 (2003) 766–772. https://doi.org/10.1299/kikaic.69.766
[93] M. Miki, N. Takakura, T. Iizuka, K. Yamaguchi, K. Kanayama, Possibility and problems in injection moulding of wood powders, Trans. Jpn. Soc. Mech. Eng. C 70 (2004) 2966–2972. https://doi.org/10.1299/kikaic.70.2966
[94] H. Kinoshita, K. Kaizu, K. Koga, H. Tokunaga, K. Ikeda, In: Proceeding of the Japan Society of Mechanical Engineers M & M 2007; 2007.
[95] M.D.H. Beg, K.L. Pickering, Reprocessing of wood fibre reinforced polypropylene composites. Part I, Effect on physical and mechanical properties, Composites: Part A 39 (2008) 1091-1100. https://doi.org/10.1016/j.compositesa.2008.04.013
[96] G.E. Myres, I.S. Cahaydi, C.A. Coberly, D.S. Ermer, Wood flour/polypropylene composites: influence of maleated polypropylene and process and composition variables on mechanical properties, Int. J. Polym. Mater. 15 (1991) 21–44. https://doi.org/10.1080/00914039108031519
[97] C. Eckert. Opportunities for natural fibres in plastic composites. In: Proceedings of progress in wood fibre-plastic composites conference, Toronto; May 25–26, 2000.
[98] D. Maldas, V. Kokta, Composite molded products based on recycled polypropylene and wood flour. J. Thermoplast. Compos. Mater. 8 (1995) 420-434. https://doi.org/10.1177/089270579500800405
[99] A. Kaymakci, N. Ayrilmis, Surface roughness and wettability of polypropylene composites filled with fast-growing biomass: Paulownia elongata wood, J. Compos. Mater. 48 (2014) 951–957. https://doi.org/10.1177/0021998313480199
[100] A.D. Cavdar, F. Mengeloglu, K. Karakus, Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites, Measurement, http://dx.doi.org/10.1016/j.measurement.2014.09.078.
[101] T. Umemura, Y. Arao, S. Nakamura, Y. Tomita, T. Tanaka, Synergy effects of wood flour and fire retardants in flammability of wood-plastic composites, Energy Proc. 56 (2014) 48–56. https://doi.org/10.1016/j.egypro.2014.07.130
[102] B. Nornberg, E. Borchardt, G.A. Luinstra, J. Fromm, Wood plastic composites from poly(propylene carbonate) and poplar wood flour–Mechanical, thermal and morphological properties, Eur. Polym. J. 51 (2014) 167–176. https://doi.org/10.1016/j.eurpolymj.2013.11.008
[103] G. Grubbstrom, K. Oksman, Influence of wood flour moisture content on the degree of silane-crosslinking and its relationship to structure–property relations of wood–thermoplastic composites, Compos. Sci. Technol. 69 (2009) 1045–1050. https://doi.org/10.1016/j.compscitech.2009.01.021
[104] W.V. Srubar III, S. Pilla, Z. C. Wright, C. A. Ryan, J.P. Greene, C.W. Frank, S.L. Billington, Mechanisms and impact of fibre–matrix compatibilization techniques on the material characterization of PHBV/oak wood flour engineered biobased composites, Compos. Sci. Technol. 72 (2012) 708–715. https://doi.org/10.1016/j.compscitech.2012.01.021
[105] M.S. Sreekala,J. George, M.G. Kumaran, S. Thomas, The mechanical performance of hybrid phenol–formaldehyde-based composites reinforced with glass and oil palm fibres, Compos. Sci. Technol. 62 (2002) 339–353. https://doi.org/10.1016/S0266-3538(01)00219-6
[106] H.D. Rozman, A. Hazlan, A. Abubakar, Preliminary study on mechanical and dimensional stability of rice husk–glass fibre hybrid polyester composites, Polym-Plast. Technol. Eng. 43 (2004) 1129–1140. https://doi.org/10.1081/PPT-200030059
[107] H.D. Rozman, G.S. Tay, R.N. Kumar, A. Abusamah, H. Ismail, Z.A.M. Ishak, Polypropylene–oil palm empty fruit bunch–glass fibre hybrid composites: a preliminary study on the flexural and tensile properties, Eur. Polym. J. 37 (2001) 1283–1291. https://doi.org/10.1016/S0014-3057(00)00243-3
[108] H. Jiang, P. Kamdem, B. Bezubic, P. Ruede, Mechanical properties of poly(vinyl chloride)/wood flour/glass fibre hybrid composites, J. Vinyl Addit. Technol. 9 (2003) 138–145. https://doi.org/10.1002/vnl.10075
[109] S. Mishra, A.K. Mohanty, L.T. Drzal, M. Misra, S. Parija, S.K. Nayak, S. S. Tripathy, Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites, Compos. Sci. Technol. 63 (2003) 1377–1385. https://doi.org/10.1016/S0266-3538(03)00084-8
[110] G.M. Rizvi, H. Semeralul, Glass fibre reinforced wood/plastic composites, J. Vinyl Addit. Technol.14 (2008) 39–42. https://doi.org/10.1002/vnl.20135
[111] A. Arbelaiz, B. Fernandez, G. Cantero, R. Llano-Ponte, A. Valea, I. Mondragon, Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization, Composites Part A 36 (2005) 1637–1644. https://doi.org/10.1016/j.compositesa.2005.03.021
[112] Y. Zhang, S. Zhang, P. Choi, Effects of wood fibre content and coupling agent content on tensile properties of wood fibre polyethylene composites, Holz. Roh. Werkst. 66 (2008) 267-274. https://doi.org/10.1007/s00107-008-0246-4
[113] Y. Habibi, W.K.E. Zawawy, M.M. Ibrahim, A. Dufresne, Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibres from Egyptian agro-industrial residues, Compos. Sci. Technol. 68 (7–8) (2008) 1877-1885. https://doi.org/10.1016/j.compscitech.2008.01.008
[114] F. Sliwa, N.E. Bounia, F. Charrier, G. Marin, F. Malet, Mechanical and interfacial properties of wood and bio-based thermoplastic composite, Compos. Sci. Technol. 72 (2012) 1733–1740. https://doi.org/10.1016/j.compscitech.2012.07.002
[115] N.E. Marcovich, A.N. Ostrovsky, M.I. Aranguren, M.M. Reboredo, Resin–sisal and wood flour composites made from unsaturated polyester thermosets, Compos. Interf. 16 (2009) 639–657. https://doi.org/10.1163/092764409X12477430713668
[116] M. Valente, F. Sarasini, F. Marra, J. Tirillo, G. Pulci, Hybrid recycled glass fibre/wood flour thermoplastic composites: Manufacturing and mechanical characterization. Composites: Part A 42 (2011) 649–657. https://doi.org/10.1016/j.compositesa.2011.02.004
[117] G. Cantero, A. Arbelaiz, F. Mugika, A. valea, I. Mondragon. Mechanical behavior of wood/polypropylene composites: Effects of fibre treatments and ageing processes, J. Reinf. Plast. Compos. 22(1) (2003) 37-50. https://doi.org/10.1177/0731684403022001495
[118] D.D. Stokke, Fundamental aspects of wood as a component of thermoplastic composites, J. Vinyl Addit. Technol. 9 (2003) 96–104. https://doi.org/10.1002/vnl.10069
[119] O. Nabinejad, D. Sujan, M.E. Rahman, I.J. Davies, Effect of filler load on the curing behavior and mechanical and thermal performance of wood flour filled thermoset composites, J. Clean. Prod. 164 (2017) 1145-1156. https://doi.org/10.1016/j.jclepro.2017.07.036
[120] H. Jeske, A. Schirp, F. Cornelius. Development of a thermogravimetric analysis (TGA) method for quantitative analysis of wood flour and polypropylene in wood plastic composites (WPC). Thermochimica Acta 543 (2012) 165– 171. https://doi.org/10.1016/j.tca.2012.05.016
[121] L. Soccalingame, A. Bourmaud, D. Perrin, J-C. Benezet, A. Bergeret, Reprocessing of wood flour reinforced polypropylene composites: impact of particle size and coupling agent on composite and particle properties, Polym. Degrad. Stab. (2015). https://doi.org/10.1016/j.polymdegradstab.2015.01.020
[122] M. Bengtsson, K. Oksman. The use of silane technology in crosslinking polyethylene/wood flour composites. Composites Part A 37 (2006) 752–765. https://doi.org/10.1016/j.compositesa.2005.06.014
[123] M. Bengtsson, K. Oksman, Silane crosslinked wood plastic composites: processing and properties, Compos. Sci. Technol. 66 (2006) 2177–2186. https://doi.org/10.1016/j.compscitech.2005.12.009
[124] M. Bengtsson, K. Oksman, N.M. Stark, Profile extrusion and mechanical properties of crosslinked wood–thermoplastic composites, Polym. Compos. 2006:184–194. https://doi.org/10.1002/pc.20177
[125] M. Sain, S.H. Park, F. Suhara, S. Law, Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide, Polym. Degrad. Stab. 83 (2004) 363-367. https://doi.org/10.1016/S0141-3910(03)00280-5
[126] M. Garcia, J. Hidalgo, J. Garmendia, J. Garcia-Jaca, Wood-plastics composites with better fire retardancy and durability performance. Compos Part A 40 (2009) 1772-1776. https://doi.org/10.1016/j.compositesa.2009.08.010
[127] N.M. Stark, R. White, S. Mueller, T. Osswald, Evaluation of various fire retardants for use in wood flour-plyethylene composites, Polym. Degrad. Stab. 95 (2010) 1903-1910. https://doi.org/10.1016/j.polymdegradstab.2010.04.014
[128] L. Danyadi, T. Janecska, Z. Szaboc, G. Nagy, J. Moczo, B. Pukanszky, Wood flour filled PP composites: Compatibilization and adhesion. Compos. Sci. Technol. 67 (2007) 2838–2846. https://doi.org/10.1016/j.compscitech.2007.01.024
[129] A. Jacob, WPC industry focuses on performance and cost. Reinf. Plast. 50 (2006) 32–33. https://doi.org/10.1016/S0034-3617(06)71010-4
[130] A.K. Bledzki, O. Faruk, V.E. Sperber, Cars from bio-fibres, Macromol. Mater. Eng.291 (2006) 449–457. https://doi.org/10.1002/mame.200600113
[131] B. Pukanszky, B. Turcsanyi, F. Tudos, Effect of interfacial interaction on the tensile yield stress of polymer composites. In: Ishida H, editor. Interfaces in polymer ceramic and metal matrix composites. New York: Elsevier; 1988. 467–477.
[132] B. Pukanszky, Influence of interface interaction on the ultimate tensile properties of polymer composites, Composites 21(1990) 255–262. https://doi.org/10.1016/0010-4361(90)90240-W
[133] B. Pukanszky, Particulate filled polypropylene: structure and properties. In: Karger-Kocsis J, editor. Polypropylene: structure blends and composites, vol. 3. London: Chapman & Hall; 1995. 1–70. https://doi.org/10.1007/978-94-011-0523-1_1