Silicon Carbide Surface Cleaning and Etching


Chapter 1 (digital PDF) of the book on Advancing Silicon Carbide Electronics Technology I.

Silicon Carbide Surface Cleaning and Etching

V. Jokubavicius, M. Syväjärvi, R. Yakimova

Silicon carbide (SiC) surface cleaning and etching (wet, electrochemical, thermal) are important technological processes in preparation of SiC wafers for crystal growth, defect analysis or device processing. While removal of organic, particulate and metallic contaminants by chemical cleaning is a routine process in research and industrial production, the etching which, in addition to structural defects analysis, can also be used to modify wafer surface structure, is very interesting for development of innovative device concepts. In this book chapter we review SiC chemical cleaning and etching procedures and present perspectives of SiC etching for new device development.

Silicon Carbide, Chemical Cleaning, Wet Etching, Electrochemical Etching, Porous SiC

Published online 9/1/2018, 27 pages

Citation: V. Jokubavicius, M. Syväjärvi, R. Yakimova, Silicon Carbide Surface Cleaning and Etching, in: Advancing Silicon Carbide Electronics Technology I, K. Zekentes, K. Vasilevskiy (Eds.), Materials Research Forum LLC, Millersville, 2018, pp 1-26


Part of the book on Advancing Silicon Carbide Electronics Technology I

[1] X. She, A.Q. Huang, O. Lucia, B. Ozpineci, Review of Silicon Carbide Power Devices and Their Applications, IEEE Trans. Ind. Electron. 64 (2017) 8193–8205.
[2] A. Morya, M. Moosavi, M.C. Gardner, H.A. Toliyat, Applications of Wide Bandgap (WBG) devices in AC electric drives: A technology status review, in: 2017 IEEE Int. Electr. Mach. Drives Conf., 2017.
[3] A. Elasser, T.P. Chow, Silicon carbide benefits and advantages for power electronics circuits and systems, Proc. IEEE. 90 (2002) 969–986.
[4] B. Whitaker, A. Barkley, Z. Cole, B. Passmore, D. Martin, T.R. McNutt, A.B. Lostetter, J.S. Lee, K. Shiozaki, A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices, IEEE Trans. Power Electron. 29 (2014) 2606–2617.
[5] F. Wada, N. Miyamoto, K. Yoshida, S. Godo, 6-in-1 Silicon Carbide (SiC) MOSFET Power Module for EV/HEV inverters, in: PCIM Asia 2017; Int. Exhib. Conf. Power Electron. Intell. Motion, Renew. Energy Energy Manag., 2017: pp. 1–4.
[6] M. Su, C. Chen, S. Sharma, J. Kikuchi, Performance and cost considerations for SiC-based HEV traction inverter systems, in: 2015 IEEE 3rd Work. Wide Bandgap Power Devices Appl., 2015: pp. 347–350.
[7] A.R. Powell, J.J. Sumakeris, Y. Khlebnikov, M.J. Paisley, R.T. Leonard, E. Deyneka, S. Gangwal, J. Ambati, V. Tsevtkov, J. Seaman, others, Bulk Growth of Large Area SiC Crystals, in: Mater. Sci. Forum, 2016: pp. 5–10.
[8] Z. Zolnaia, N.Q. Khánha, E. Szilágyib, Z.E. Horvátha, T. Lohnera, Native oxide and ion implantation damaged layers on silicon carbide studied by ion beam analysis and ellipsometry, in: Proc.” XV Int. Conf. Phys. Students ICPS, 2000: pp. 4–11.
[9] W. Huang, X. Liu, X.C. Liu, T.Y. Zhou, S.Y. Zhuo, Y.Q. Zheng, J.H. Yang, E.W. Shi, Nano-Scale Native Oxide on 6H-SiC Surface and its Effect on the Ni/Native Oxide/SiC Interface Band Bending, Mater. Sci. Forum. (2014).
[10] J.J. McMahon, M. Jahanbani, S. Arthur, D. Lilienfeld, P. Gipp, T. Gorczyca, J. Formica, L. Shen, M. Yamagami, B. Hillard, J. Byrnes, Wet Processing for Post-epi & Pre-furnace Cleans in Silicon Carbide Power MOSFET Fabrication, ECS Trans. 69 (2015) 269–276.
[11] K.F. Schuegraf, C. Hu, Reliability of thin SiO2, Semicond. Sci. Technol. (1994).
[12] B.D. Choi, D.K. Schroder, Degradation of ultrathin oxides by iron contamination, Appl. Phys. Lett. (2001).
[13] H. Kohno, Evaluation of Contamination of Power Semiconductor Device Wafers by TXRF Spectrometer, Rikagu J. 29 (2013) 9–14.
[14] W. Kern, D. Puotinen, Cleaning Solutions Based on Hydrogen for Use in Silicon Semiconductor Technology, R.C.A. Rev. 31 (1970) 187–206.
[15] W. Kern, The Evolution of Silicon Wafer Cleaning Technology, J. Electrochem. Soc. 137 (1990) 1887–1892.
[16] W. Kern, Handbook of semiconductor wafer cleaning technology, 1993.
[17] Y. Nishi, R. Doering, Handbook of Semiconductor Manufacturing Technology, Second Edition, CRC Press, 2017.
[18] S. Saddow, Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, Elsevier Science, 2016.
[19] C. Virojanadara, M. Syv\ajarvi, R. Yakimova, L. Johansson, A. Zakharov, T. Balasubramanian, Homogeneous large-area graphene layer growth on 6H-SiC(0001), Phys.Rev.B. 78 (2008) 245403.
[20] S.W. King, R.J. Nemanich, R.F. Davisa, Wet Chemical Processing of (0001)Si 6H‐SiC Hydrophobic and Hydrophilic Surfaces, J. Electrochem. Soc. 146 (1999) 1910–1917.
[21] J.S. Judge, A Study of the Dissolution of SiO2 in Acidic Fluoride Solutions, J. Electrochem. Soc. . 118 (1971) 1772–1775.
[22] S. Verhaverbeke, The Etching Mechanisms of SiO2 in Hydrofluoric Acid, J. Electrochem. Soc. (1994).
[23] V. Stambouli, D. Chaussende, M. Anikin, G. Berthomé, V. Thoreau, J.C. Joud, Wettability Study of SiC in Correlation with XPS Analysis, in: Silicon Carbide Relat. Mater. 2003, Trans Tech Publications, 2004: pp. 423–426.
[24] R.P. Socha, K. Laajalehto, P. Nowak, Influence of the surface properties of silicon carbide on the process of SiC particles codeposition with nickel, Colloids Surfaces A Physicochem. Eng. Asp. 208 (2002) 267–275.
[25] S.W. King, M.C. Benjamin, R.S. Kern, R.J. Nemanich, R.F. Davis, Ex Situ and In Situ Methods for Complete Oxygen and Non-Carbidic Carbon Removal from (0001)SI 6H-SiC Surfaces, MRS Proc. 423 (1996) 563.
[26] V.J. Jennings, The etching of silicon carbide, in: Silicon Carbide–1968, Elsevier, 1969: pp. S199–S210.
[27] D. Zhuang, J.H. Edgar, Wet etching of GaN, AlN, and SiC: A review, Mater. Sci. Eng. R Reports. 48 (2005) 1–46.
[28] T. Nakagawa, M. Hara, K. Imai, Hot corrosion behavior of SiC in molten Na2SO4, Nippon Kinzoku Gakkaishi/Journal Japan Inst. Met. 61 (1997) 1241–1248.
[29] T. Sato, Y. Kanno, M. Shimada, Corrosion of SiC, Si3N4 and AIN in molten K2SO4K2CO3 salts, Int. J. High Technol. Ceram. 2 (1986) 279–290.
[30] N.S. Jacobson, J.L. Smialek, Molten salt corrosion of alpha -SiC, in: Electrochem. Soc. Ext. Abstr., 1985: pp. 550–551.
[31] R.E. Tressler, M.D. Meiser, T. Yonushonis, Molten Salt Corrosion of SiC and Si3N4 Ceramics‐, J. Am. Ceram. Soc. 59 (1976) 278–279.
[32] J.W. Faust Jr, Processing of Silicon Carbide for Devices, in: Silicon Carbide High Temp. Semicond. Proc. Conf. Silicon Carbide, Boston, Mass. April. 1959, 1960: p. 403.
[33] T. Gabor, V.J. Jennings, Effect of stirring on etching characteristics of silicon carbide, Electrochem. Technol. 3 (1965) 31.
[34] S. Amelinckx, G. Strumane, W.W. Webb, Dislocations in Silicon Carbide, J. Appl. Phys. 31 (1960) 1359–1370.
[35] G.L. Harris, Properties of Silicon Carbide, INSPEC, Institution of Electrical Engineers, 1995.
[36] S.A. Sakwe, R. Müller, P.J. Wellmann, Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC, J. Cryst. Growth. 289 (2006) 520–526.
[37] M. Katsuno, N. Ohtani, J. Takahashi, H. Yashiro, M. Kanaya, Mechanism of molten KOH etching of SiC single crystals: Comparative study with thermal oxidation, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. (1999).
[38] Y. Cui, X. Hu, X. Xie, X. Xu, Threading dislocation classification for 4H-SiC substrates using the KOH etching method, CrystEngComm. 20 (2018) 978–982.
[39] K. Sangwal, Etching of crystals: Theory, Exp. Appl. (1987).
[40] S. Ha, H.J. Chung, N.T. Nuhfer, M. Skowronski, Dislocation nucleation in 4H silicon carbide epitaxy, J. Cryst. Growth. 262 (2004) 130–138.
[41] I. Kamata, H. Tsuchida, T. Jikimoto, K. Izumi, Structural transformation of screw dislocations via thick 4H-SiC epitaxial growth, Jpn. J. Appl. Phys. 39 (2000) 6496–6500.
[42] J. Hassan, A. Henry, P.J. McNally, J.P. Bergman, Characterization of the carrot defect in 4H-SiC epitaxial layers, J. Cryst. Growth. 312 (2010) 1828–1837.
[43] S. Mahajan, M. V. Rokade, S.T. Ali, K. Srinivasa Rao, N.R. Munirathnam, T.L. Prakash, D.P. Amalnerkar, Investigation of micropipe and defects in molten KOH etching of 6H n-silicon carbide (SiC) single crystal, Mater. Lett. 101 (2013) 72–75.
[44] Y. Gao, Z. Zhang, R. Bondokov, S. Soloviev, T. Sudarshan, The Effect of Doping Concentration and Conductivity Type on Preferential Etching of 4H-SiC by Molten KOH, in: Mater. Res. Soc. Symp. Proc., 2004: p. 815.
[45] H. Wang, S. Sun, M. Dudley, S. Byrappa, F. Wu, B. Raghothamachar, G. Chung, E.K. Sanchez, S.G. Mueller, D. Hansen, M.J. Loboda, Quantitative comparison between dislocation densities in offcut 4H-SiC wafers measured using synchrotron X-ray topography and molten KOH etching, J. Electron. Mater. 42 (2013) 794–798.
[46] K.M. Speer, P.G. Neudeck, D.J. Spry, A.J. Trunek, P. Pirouz, Cross-sectional TEM and KOH-Etch studies of extended defects in 3C-SiC p+n junction diodes grown on 4H-SiC mesas, J. Electron. Mater. 37 (2008) 672–680.
[47] J.L. Weyher, S. Lazar, J. Borysiuk, J. Pernot, Defect-selective etching of SiC, Phys. Status Solidi Appl. Mater. Sci. 202 (2005) 578–583.
[48] W. Si, M. Dudley, R.C. Glass, C.H. Carter Jr., V.F. Tsvetkov, Experimental Studies of Hollow-Core Screw Dislocations in 6H-SiC and 4H-SiC Single Crystals, in: Silicon Carbide, III-Nitrides Relat. Mater., Trans Tech Publications, 1997: pp. 429–432.
[49] M. Dudley, W. Si, S. Wang, C. Carter, R. Glass, V. Tsvetkov, Quantitative analysis of screw dislocations in 6H- SiC single crystals, Nuovo Cim. D. 19 (1997) 153–164.
[50] N. Ohtani, M. Katsuno, T. Fujimoto, Reduction of stacking fault density during SiC bulk crystal growth in the [112̄0] direction, Jpn. J. Appl. Phys. 42 (2003) L 277–L 279.
[51] M. Syväjärvi, R. Yakimova, E. Janzén, Cross-sectional cleavages of SiC for evaluation of epitaxial layers, J. Cryst. Growth. 208 (2000) 409–415.
[52] T. Ohshima, K.K. Lee, Y. Ishida, K. Kojima, Y. Tanaka, T. Takahashi, M. Yoshikawa, H. Okumura, K. Arai, T. Kamiya, The electrical characteristics of metal-oxide-semiconductor field effect transistors fabricated on cubic silicon carbide, Japanese J. Appl. Physics, Part 2 Lett. 42 (2003).
[53] J. Takahashi, N. Ohtani, M. Kanaya, Structural defects in α-SiC single crystals grown by the modified-Lely method, J. Cryst. Growth. 167 (1996) 596–606.
[54] J. Takahashi, N. Ohtani, M. Katsuno, S. Shinoyama, Sublimation growth of 6H- and 4H-SiC single crystals in the [1¯100] and [11¯20] directions, J. Cryst. Growth. 181 (1997) 229–240.
[55] M. Syväjärvi, R. Yakimova, E. Janzen, Anisotropic Etching of SiC, J. Electrochem. Soc. 147 (2000) 3519–3522.
[56] R. Yakimova, A.-L. Hylén, M. Tuominen, M. Syväjärvi, E. Janzen, Preferential etching of SiC crystals, Diam. Relat. Mater. 6 (1997) 1456–1458.
[57] C. Kawahara, J. Suda, T. Kimoto, Identification of dislocations in 4H-SiC epitaxial layers and substrates using photoluminescence imaging, Jpn. J. Appl. Phys. 53 (2014) 20304.
[58] P.G. Neudeck, A.J. Trunek, D.J. Spry, J.A. Powell, H. Du, M. Skowronski, X.R. Huang, M. Dudley, CVD Growth of 3C-SiC on 4H/6H Mesas, Chem. Vap. Depos. 12 (2006) 531–540.
[59] V. Jokubavicius, G.R. Yazdi, R. Liljedahl, I.G. Ivanov, J. Sun, X. Liu, P. Schuh, M. Wilhelm, P. Wellmann, R. Yakimova, M. Syväjärvi, Single Domain 3C-SiC Growth on Off-Oriented 4H-SiC Substrates, Cryst. Growth Des. 15 (2015) 2940–2947.
[60] P. Wu, M. Yoganathan, I. Zwieback, Y. Chen, M. Dudley, Characterization of Dislocations and Micropipes in 4H n+ SiC Substrates, in: Silicon Carbide Relat. Mater. 2007, Trans Tech Publications, 2009: pp. 333–336.
[61] B. Kallinger, S. Polster, P. Berwian, J. Friedrich, G. Müller, A.N. Danilewsky, A. Wehrhahn, A.-D. Weber, Threading dislocations in n-and p-type 4H-SiC material analyzed by etching and synchrotron X-ray topography, J. Cryst. Growth. 314 (2011) 21–29.
[62] M. Na, I.H. Kang, J.H. Moon, W. Bahng, Role of the oxidizing agent in the etching of 4H-SiC substrates with molten KOH, J. Korean Phys. Soc. 69 (2016) 1677–1682.
[63] P.H.L. Notten, J.E.A.M. Meerakker, J.J. Kelly, Etching of III-V semiconductors: an electrochemical approach, Elsevier Science Ltd, 1991.
[64] J.S. Shor, R.M. Osgood, Broad-Area Photoelectrochemical Etching of n-Type Beta-SiC, J. Electrochem. Soc. 140 (1993) L123-L125.
[65] Y. Ke, R.P. Devaty, W.J. Choyke, Comparative columnar porous etching studies on n-type 6H SiC crystalline faces, Phys. Status Solidi. 245 (2008) 1396–1403.
[66] A.O. Konstantinov, C.I. Harris, E. Janzen, Electrical properties and formation mechanism of porous silicon carbide, Appl. Phys. Lett. 65 (1994) 2699–2701.
[67] Y. Shishkin, W.J. Choyke, R.P. Devaty, Photoelectrochemical etching of n-type 4H silicon carbide, J. Appl. Phys. 96 (2004) 2311–2322.
[68] G. Gautier, F. Cayrel, M. Capelle, J. Billoué, X. Song, J.-F. Michaud, Room light anodic etching of highly doped n-type 4 H-SiC in high-concentration HF electrolytes: Difference between C and Si crystalline faces, Nanoscale Res. Lett. 7 (2012) 367.
[69] Y. Ke, R.P. Devaty, W.J. Choyke, Self-ordered nanocolumnar pore formation in the photoelectrochemical etching of 6H SiC, Electrochem. Solid-State Lett. 10 (2007) K24-K27.
[70] P. Newby, J.-M. Bluet, V. Aimez, L.G. Fréchette, V. Lysenko, Structural properties of porous 6H silicon carbide, Phys. Status Solidi. 8 (2011) 1950–1953.
[71] G. Gautier, J. Biscarrat, D. Valente, T. Defforge, A. Gary, F. Cayrel, Systematic Study of Anodic Etching of Highly Doped N-type 4H-SiC in Various HF Based Electrolytes, J. Electrochem. Soc. 160 (2013) D372-D379.
[72] S. Soloviev, T. Das, S.T. S., Structural and Electrical Characterization of Porous Silicon Carbide Formed in n-6H-SiC Substrates, Electrochem. Solid-State Lett. 6 (2003) G22–G24.
[73] W. Lu, Y. Ou, P.M. Petersen, H. Ou, Fabrication and surface passivation of porous 6H-SiC by atomic layer deposited films, Opt. Mater. Express. 6 (2016) 1956–1963.
[74] M. Leitgeb, C. Zellner, M. Schneider, U. Schmid, A Combination of Metal Assisted Photochemical and Photoelectrochemical Etching for Tailored Porosification of 4H SiC Substrates, ECS J. Solid State Sci. Technol. 5 (2016) P556–P564.
[75] M. Leitgeb, C. Zellner, C. Hufnagl, M. Schneider, S. Schwab, H. Hutter, U. Schmid, Stacked Layers of Different Porosity in 4H SiC Substrates Applying a Photoelectrochemical Approach, J. Electrochem. Soc. 164 (2017) E337–E347.
[76] M. Leitgeb, A. Backes, C. Zellner, M. Schneider, U. Schmid, Communication-The Role of the Metal-Semiconductor Junction in Pt-Assisted Photochemical Etching of Silicon Carbide, ECS J. Solid State Sci. Technol. 5 (2016) P148–P150.
[77] J. Hassan, J.P. Bergman, A. Henry, E. Janzén, In-situ surface preparation of nominally on-axis 4H-SiC substrates, J. Cryst. Growth. 310 (2008) 4430–4437.
[78] C. Hallin, F. Owman, P. Mårtensson, A. Ellison, A. Konstantinov, O. Kordina, E. Janzén, In situ substrate preparation for high-quality SiC chemical vapour deposition, J. Cryst. Growth. 181 (1997) 241–253.
[79] H. Lee, B. Park, S. Jeong, S. Joo, H. Jeong, The effect of mixed abrasive slurry on CMP of 6H-SiC substrates, J. Ceram. Process. Res. 10 (2009) 378.
[80] L. Zhou, V. Audurier, P. Pirouz, J.A. Powell, Chemomechanical Polishing of Silicon Carbide, J. Electrochem. Soc. 144 (1997) L161–L163.
[81] H. Deng, K. Endo, K. Yamamura, Competition between surface modification and abrasive polishing: a method of controlling the surface atomic structure of 4H-SiC (0001), Sci. Rep. 5 (2015) 8947.
[82] M. Anikin, R. Madar, Temperature gradient controlled SiC crystal growth, Mater. Sci. Eng. B. 46 (1997) 278–286.
[83] S.P. Lebedev, V.N. Petrov, I.S. Kotousova, A.A. Lavrentev, P.A. Dementev, A.A. Lebedev, N. Titkov, Formation of Periodic Steps on 6H-SiC (0001) Surface by Annealing in a High Vacuum, Mater. Sci. Forum. 679 (2011) 437.
[84] T. Nishiguchi, S. Ohshima, S. Nishino, Thermal Etching of 6H–SiC Substrate Surface, Jpn. J. Appl. Phys. 42 (2003) 1533.
[85] N.G. van der Berg, J.B. Malherbe, A.J. Botha, E. Friedland, Thermal etching of SiC, Appl. Surf. Sci. 258 (2012) 5561–5566.
[86] I. Swiderski, Thermal etching of α-SiC crystals in argon, J. Cryst. Growth. 16 (1972) 1–9.
[87] V. Jokubavicius, G.R. Yazdi, I.G. Ivanov, Y. Niu, A. Zakharov, T. Iakimov, M. Syväjärvi, R. Yakimova, Surface engineering of SiC via sublimation etching, Appl. Surf. Sci. 390 (2016).
[88] G. Honstein, C. Chatillon, F. Baillet, Thermodynamic approach to the vaporization and growth phenomena of SiC ceramics. I. SiC and SiC–SiO2 mixtures under neutral conditions, J. Eur. Ceram. Soc. 32 (2012) 1117–1135.
[89] Y.A. Vodakov, A.D. Roenkov, M.G. Ramm, E.N. Mokhov, Y.N. Makarov, Use of Ta-Container for Sublimation Growth and Doping of SiC Bulk Crystals and Epitaxial Layers, Phys. Status Solidi. 202 (1997) 177–200.<177::AID-PSSB177>3.0.CO;2-I
[90] F.R. Chien, S.R. Nutt, W.S. Yoo, T. Kimoto, H. Matsunami, Terrace growth and polytype development in epitaxial β-SiC films on α-SiC (6H and 15R) substrates, J. Mater. Res. 9 (1994) 940–954.
[91] V. Heine, C. Cheng, R.J. Needs, The Preference of Silicon Carbide for Growth in the Metastable Cubic Form, J. Am. Ceram. Soc. 74 (1991) 2630–2633.
[92] T. Matsumoto, J. Takahashi, T. Tamaki, T. Futagi, H. Mimura, Y. Kanemitsu, Blue‐green luminescence from porous silicon carbide, Appl. Phys. Lett. 64 (1994) 226–228.
[93] T.L. Rittenhouse, P.W. Bohn, T.K. Hossain, I. Adesida, J. Lindesay, A. Marcus, Surface-state origin for the blueshifted emission in anodically etched porous silicon carbide, J. Appl. Phys. 95 (2004) 490–496.
[94] S. Kamiyama, T. Maeda, Y. Nakamura, M. Iwaya, H. Amano, I. Akasaki, H. Kinoshita, T. Furusho, M. Yoshimoto, T. Kimoto, J. Suda, A. Henry, I.G. Ivanov, J.P. Bergman, B. Monemar, T. Onuma, S.F. Chichibu, Extremely high quantum efficiency of donor-acceptor-pair emission in N-and-B-doped 6H-SiC, J. Appl. Phys. 99 (2006) 93108.
[95] S. Kamiyama, M. Iwaya, T. Takeuchi, I. Akasaki, M. Syväjärvi, R. Yakimova, Fluorescent SiC and its application to white light-emitting diodes, J. Semicond. 32 (2011) 13004.
[96] T. Nishimura, K. Miyoshi, F. Teramae, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, High efficiency violet to blue light emission in porous SiC produced by anodic method, Phys. Status Solidi. 7 (2010) 2459–2462.
[97] W. Lu, Y. Ou, E.M. Fiordaliso, Y. Iwasa, V. Jokubavicius, M. Syväjärvi, S. Kamiyama, P.M. Petersen, H. Ou, White Light Emission from Fluorescent SiC with Porous Surface, Sci. Rep. 7 (2017) 9798.
[98] M. Leitgeb, C. Zellner, M. Schneider, U. Schmid, Porous single crystalline 4H silicon carbide rugate mirrors, APL Mater. 5 (2017) 106106.
[99] A.J. Rosenbloom, S. Nie, Y. Ke, R.P. Devaty, W.J. Choyke, Columnar morphology of porous silicon carbide as a protein-permeable membrane for biosensors and other applications, in: Mater. Sci. Forum, 2006: pp. 751–754.
[100] A.J. Rosenbloom, D.M. Sipe, Y. Shishkin, Y. Ke, R.P. Devaty, W.J. Choyke, Nanoporous SiC: A candidate semi-permeable material for biomedical applications, Biomed. Microdevices. 6 (2004) 261–267.
[101] Y.-W. Son, M.L. Cohen, S.G. Louie, Half-metallic graphene nanoribbons, Nature. 444 (2006) 347.
[102] V. Barone, O. Hod, G.E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons, Nano Lett. 6 (2006) 2748–2754.
[103] J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A.-P. Li, Z. Jiang, E.H. Conrad, C. Berger, C. Tegenkamp, W.A. de Heer, Exceptional ballistic transport in epitaxial graphene nanoribbons, Nature. 506 (2014) 349.
[104] A. Stöhr, J. Baringhaus, J. Aprojanz, S. Link, C. Tegenkamp, Y. Niu, A.A. Zakharov, C. Chen, J. Avila, M.C. Asensio, others, Graphene Ribbon Growth on Structured Silicon Carbide, Ann. Phys. 529 (2017) 1700052.
[105] M.S. Nevius, F. Wang, C. Mathieu, N. Barrett, A. Sala, T.O. Mentes, A. Locatelli, E.H. Conrad, The bottom-up growth of edge specific graphene nanoribbons, Nano Lett. 14 (2014) 6080–6086.
[106] M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, W.A. De Heer, Scalable templated growth of graphene nanoribbons on SiC, Nat. Nanotechnol. 5 (2010) 727.