Evaluation of Sisal and Curauá Fibers Inclusions on Strength and Stiffness Response of Soil

$12.50

Evaluation of Sisal and Curauá Fibers Inclusions on Strength and Stiffness Response of Soil

M.V. Silveira, M.D.T. Casagrande

Abstract. This experimental study reports the behavior of a reinforced and unreinforced granular soil with the addition of short sisal and curauá fibers. The fibers used as soil reinforcing element are extracted from the leaves of the plants curauá (Ananás erectifolius) and sisal (Agave sisalana). These vegetal fibers were chosen because they have good mechanical properties and the need for new renewable materials. The sisal and curauá fibers were mixed with granular soil in a randomly distributed form to evaluate its influence on the mechanical properties of the soil. A series of triaxial compression isotropic drained test was performed to seek to establish patterns of behavior that might explain the influence of the addition of vegetal fibers, relating it to the shear strength and deformation parameters of the soil. The tests were performed on samples subjected to a relative density of 50%, moisture content of 10%, fibers content in proportions of 0 and 0.5% of the dry weight of the soil and the fibers lengths of 25mm. Through the obtained results, it was observed that the addition of sisal and curauá fibers randomly distributed leads to significant improvements in the mechanical properties of the soil, since it was observed an increase in the cohesion and angle of friction of the mixtures compared to the values obtained for the pure soil. The results show the potential of sisal and curauá fibers used as reinforcement of soils in earthwork layers subjected to static loads, such as landfills and embankments on soft soils.

Keywords
Vegetal Fibers, Soil Reinforcement, Triaxial Tests, Mechanical Behavior

Published online , 8 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: M.V. Silveira, M.D.T. Casagrande, ‘Evaluation of Sisal and Curauá Fibers Inclusions on Strength and Stiffness Response of Soil’, Materials Research Proceedings, Vol. 7, pp 791-798, 2018

DOI: http://dx.doi.org/10.21741/9781945291838-78

The article was published as article 78 of the book Non-Conventional Materials and Technologies

References
[1] Palmeira EM. Geossintéticos: tipos e evolução nos últimos anos. Seminário sobre Aplicações de Geossintéticos em Geotecnia. Geossintéticos 92. Brasília. 1992. pp.1-20.
[2] Budinski KG. Engineering materials, properties and selection. 5ed. New Jersey: Prentice Hall International. 1996. 653p.
[3] Taylor GD. Materials in construction. 2ed. London: Longman Scientific & Technical. 1994. 284p.
[4] Illston JM. Constrution materials; their nature and behavior. 2ed. London: E & FN Spon. 1994. 518p
[5] Hannant L. Polymers and polymers composities. In: J.M. ILLSTON. Construction materials: their nature and behavior. 2ed., London: J.M. Illston/E & FN Spon. 1994. pp. 359-403
[6] Palacios MAP. Comportamento de uma Areia Reforçada com Fibras de Polipropileno Submetida a Ensaios Triaxiais de Extensão. MSc Dissertation – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro. 2012.
[7] Dittenber DB, GangaRao HVS. Critical Review of Recent Publications on Use of Natural Composites in Infrastructure. Composites Part A: Applied Science and Manufacturing, 43(8). 2012. 1419-1429. https://doi.org/10.1016/j.compositesa.2011.11.019
[8] Ghavami K, Toledo Filho RD, Barbosa NP. Behaviour of composite soil reinforced with natural fibers. 1999. Cement and Concrete Composites 21.
[9] Martins APS. Desenvolvimento, caracterização mecânica e durabilidade de compósitos solo-cimento autoadensáveis reforçados com fibras de sisal. 2014. PhD Thesis – UFRJ/COPPE. Rio de Janeiro
[10] Fidelis MEA. Desenvolvimento e caracterização mecânica de compósitos cimentícios têxteis reforçados com fibras de juta. 2014. PhD Thesis – Universidade Federal do Rio de Janeiro. Programa de Pós-graduação em Engenharia Civil, COPPE. Rio de Janeiro
[11] Picanço MS. Compósitos cimentícios reforçados com fibras de curauá. 2005. MSc Dissertation – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil. Rio de Janeiro.
[12] Santiago GA. Estudo do Comportamento Mecânico de Compósitos Solo-Fibras Vegetais Impermeabilizadas com Solução de Poliestireno Expandido (EPS) e Cimento Asfáltico de Petróleo (CAP). 2011. PhD Thesis – Universidade Federal de Ouro Preto. Escola de Minas.
[13] Müssig, J. Industrial Applications of Natural Fibres. 2010. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470660324
[14] Tolêdo Filho RD. Materiais compósitos reforçados com fibras naturais: caracterização experimental. 1997. PhD Thesis – Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. Rio de Janeiro.
[15] Casagrande MDT. Comportamento de solos reforçados com fibras submetidos a grandes deformações. 2005. PhD Thesis – Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia Civil. Rio Grande do Sul.
[16] Girardello V. Ensaios de placa em areias não saturadas reforçada com fibras. 2010. MSc Dissertation – Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia Civil. Rio Grande do Sul.
[17] Sotomayor JMG. Avaliação do comportamento carga-recalque de uma areia reforçada com fibra de coco submetida a ensaios de placa em verdadeira grandeza. 2014. MSc Dissertation – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro.
[18] Louzada, NSL. Experimental Study of Soils Reinforced with Crushed Polyethylene Terephthalate (PET) Residue. 2015. MSc Dissertation – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro.
[19] Head KH. Manual of Soil Laboratory Testing: Effective Stress Test. 1986. Wiley, 2nd ed., v.3, West Sussex, Inglaterra, p.227.
[20] De Campos TMP, Carrillo CW. Direct Shear Testing on an Unsaturated Soil from Rio de Janeiro. 1995. Unsaturated Soils, Alonso & Delage (eds), pp. 31-38.
[21] Michalowski RL, Cermák J. Triaxial compression of sand reinforced with fibres. 2003. Journal of Geotechnical and Geoenvironmental Engineering, 129(2), 125-136. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:2(125)
[22] Ibraim E, Diambra A, Muir Wood D, Russell AR. Static liquefation of fibre reinforced sand under monotonic loading. Geotextiles and Geomembranes 28. 2010. 374-385. https://doi.org/10.1016/j.geotexmem.2009.12.001
[23] Silva dos Santos AP, Consoli NC, Baudet BA. The mechanics of fibre-reinforced sand. 2010. Géotechnique 60 (10), 791-799. https://doi.org/10.1680/geot.8.P.159
[24] Consoli NC, Festugato L, Heineck KS. Strain-hardening behaviour of fibre-reinforced sand in view of filament geometry. 2009. Geosynthetics Int. 16, No. 2, 109–115. https://doi.org/10.1680/gein.2009.16.2.109